• 제목/요약/키워드: Hot water distributor

검색결과 15건 처리시간 0.03초

온수 추출과정 동안 축열조 내의 열성층 특성 및 온수 이용률에 관한 연구 (A Study on Thermal Stratification Characteristics and Useful Rate of Hot Water in Thermal Storage Tank during Hot Water Extraction Process)

  • 장영근;박정원
    • 설비공학논문집
    • /
    • 제14권6호
    • /
    • pp.503-511
    • /
    • 2002
  • Heat flow characteristics during hot water extraction process was studied experimentally. Data were taken at various outlet port type for the fixed inlet port type, inlet-outlet temperature differences and mass flow rates. In this study, the temperature distribution in a storage tank and an outlet temperature were measured to predict a degree of stratification in the storage tank, and a useful rate of hot water was analysed with respect to the variables dominating a extraction process. Experimental results show that the degree of stratification and useful rate of hot water are all high in a low flow rate in case of using modified distributor I (MDI) as the outlet port type.

열성층 온수저장시스템의 효율적 이용에 관한 실험적 연구 (Experimental Study on the Effective Use of Thermally Stratified Hot Water Storage System)

  • 박이동
    • 태양에너지
    • /
    • 제13권2_3호
    • /
    • pp.45-52
    • /
    • 1993
  • 현열저장에서 열성층의 이점을 태양열 주택에 적용해보았다. 성층으로 인하여 에너지 입력의 열이용 효율이 증가되는 효과가 논의되었고, 실험과 시뮤레이션을 통하여 설명되었다. 성층을 촉진시키기 위하여 Distributor를 사용하였으며, 본 실험에서 Q=8 liter/min, ${\Delta}T=40^{\circ}C$일 때, 최대 90%의 열이용 효율을 얻을 수 있었다. 한편 성층을 촉진시키기 위하여 Distributor의 적은 구멍에서 나오는 유동(속도와 압력)이 같게 제작할 수만 있다면 그 이상의 열이용효율도 얻을 수 있음이 입증되었다.

  • PDF

온수추출과정의 열유동 특성에 관한 연구 (A Study on Heat Flow Characteristics during Hot Water Extraction Process)

  • 장영근;박정원
    • 설비공학논문집
    • /
    • 제13권7호
    • /
    • pp.549-556
    • /
    • 2001
  • Heat flow characteristics during hot water extraction process was studied experimentally. Data were taken at various outlet port type for the fixed inlet port type, inlet-outlet temperature differences and mass flow rates. In this study, the temperature distribution in a storage tank and an outlet temperature were measured to predict a flow pattern in the storage tank, and a hot water extraction efficiency was analysed with respect to the variables dominating a extraction process. Experimental results show that the extraction efficiency is high in a low flow rate in case of using modified distributor I(MDI) as a outlet port type.

  • PDF

바이패스용 3-Way 밸브를 장착한 온수 난방시스템의 압력 및 유량 특성 평가 (Performance Test of Pressure and Flow Rate in a Hot-Water Heating System with 3-Way Valves for Flow Bypass)

  • 허전;이석종;성재용;이명호;윤재동
    • 설비공학논문집
    • /
    • 제19권3호
    • /
    • pp.269-274
    • /
    • 2007
  • A 3-way valve has been applied to a distributor in a hot-water heating system and the performance of the system was evaluated in view of the variations of pressure drop and flow rate. The 3-way valve has been designed to bypass overplus hot-water when a control valve is closed. Note that the flow goes through heating pipeline in normal operation. In the present study, the measured pressure drops in each part of the flow paths show that the contribution to the total pressure drop is in the order of the supply header with control valves, piping system of each room and return header of the distributor, even though the amount of it is different according to the flow paths. As a result of performance test by sequential closing of the control valves, the variations of pressure drop and flow rate in the distributor with 3-way valves is much lower than those with previous 2-way valves, which prevent noises induced by pressure fluctuations.

가변유량 밸런싱밸브를 적용한 온수 난방시스템의 유체역학적 성능 평가 (Fluid Dynamic Performance in a Hot-Water Heating System with a Variable-Flow-Rate Balancing Valve)

  • 허전;이석종;성재용;이명호
    • 설비공학논문집
    • /
    • 제19권8호
    • /
    • pp.577-584
    • /
    • 2007
  • A variable-flow-rate balancing valve has been developed and optimized to apply to a distributor in a hot-water heating system. Fluid dynamic performance of the system was evaluated by comparing the results with the previous pressure difference control valve (PDCV) system. In view of the variations of pressure drop and flow rate according to the sequential closing of the control valves, the present system which is named "smart system distributor", is very stable without a certain flow rate concentration. The level of pressure drop variation is also low as compared with the previous system with a PDCV. In view of the occurrence of cavitation, the present system is quite superior to the previous system because the instantaneous pressures at all sections are much higher than the vapor pressure. On the other hand, the previous system has a possibility of cavitation when one or more control valves are closed.

온수 추출에 따른 유동 및 혼합 특성에 관한 연구 (A Study on Flow and Mixing Caracteristics according to Hot Water Extraction)

  • 장영근;박이동;김철주;황영규
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1995년도 춘계학술발표회 초록집
    • /
    • pp.53-59
    • /
    • 1995
  • In a hot water extraction process, the flow pattern of upper region in a storage tank is a major reason of mixing between hot water and cold water. In this study, the temperature distribution in a storage tank was measured to predict the flow pattern of upper region, and the degree of stratification was analysed to the variables dominating a extraction process. And also, it was found that the degree of stratification improved expecially in a low flow rate in case of using modified distributor I(DMI) as a outlet port type.

  • PDF

태양열의 성층축열과 주택이용에 관한 연구(성층축열) (Thermally Stratified Hot Water Storage)

  • 박이동
    • 태양에너지
    • /
    • 제10권3호
    • /
    • pp.3-12
    • /
    • 1990
  • 본 실험연구에서는 탱크의 직경에 대한 높이의 비(H/D)가 3이고 유입 유량이 8LPM, 유입수의 온도와 기존 저장수와의 온도차, ${\Delta}T=30^{\circ}C$일때, 운동량교환을 최소화하여 가장 좋은 성층을 얻었고 또한 실험에서 사용한 유입구(Inlet Port)의 경우 수정 Richardson수(Modified Richardson Number), Ri가 0.004(Q=10LPM, ${\Delta}T=30^{\circ}C$) 이하의 값에서는 완전 혼합(Fully Mixing)이 발생하고 H/D가 작아질수록 혼합층의 두께($H^*/H$)가 증가하여 성층 축열에는 바람직하지 못하였다. 그리고 성층은 성층을 촉진시키기 위하여 Distributor를 사용했을 때가, Distributor를 사용하지 않은 유입구(Inlet Port)의 경우 보다 잘 형성되어 저장효율이 Distributor를 사용한 경우(Q=8LPM, ${\Delta}T=30^{\circ}C$, H/D=3)에 Distributor를 사용하지 않은 유입구(Inlet Port)의 최저효율 63%(Q=12LPM, ${\Delta}T=30^{\circ}C$, H/D=3인 경우)보다는 31% 정도, 최대효율 84%(Q=8LPM, ${\Delta}T=30^{\circ}C$, H/D=3인 경우)보다는 11% 정도 높은 95%까지 저장 효율을 증가시킬 수 있었다. 더 나아가서 단면이 균일한 원형 Distributor(A=D=Constant)의 경우에, 유량이 8LPM인 경우에 관내의 압력차가 작아 부분혼합(Partial Mixing)이 감소하여 안정된 성층을 얻을 수 있었다. 그리고, Distributor의 직경을 다음식과 같이 $$\frac{D}{D_L}=(\frac{x}{L})^{1/2}(1+\frac{fL}{2D})-\frac{fx}{2D_L}$$ 길이에 대하여 변화시켜 Distributor를 제작함으로써, 보다 안정된 열성층과 높은 열저장 효율을 얻을 수 있을 것으로 예상한다.

  • PDF

태양열원 난방기의 수축열조 효율개선에 관한 연구 (The Study on Efficiency Improvement of a Thermal Storage Tank for Solar Combined Heating System)

  • 류남진;한유리;박윤철
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.43-49
    • /
    • 2007
  • This study is conducted to improve the efficiency of a thermal storage tank. The thermal storage tank was designed to store heat energy that obtained from the solar or the others heat sources. However, it has difficulties in storing heat with nonuniform temperature through the entire tank with respect to the vertical direction, This study is focused on the thermal stratification to improve thermal comfort for the resident in house. To enhance temperature stratification of the tank, a distributor was designed and installed in the middle of the storage tank vertically. The vertically designed distributor could supply the return water with stratified temperature in the storage tank with respect to the height. The water velocity from the distributor hole is the same with the other outlet in the distributor. However, gravity effect on the flow in the storage tank is much higher than that of the velocity effect due to that Froude Number is less than 1. During the heat charging process in the storage tank, temperature maintained with little difference with respect to the height. However the charging process takes long time to get a effective temperature for the heating or hot water supply because of all of water in the storage tank needs to be heated.

태양열 온수 저장조의 성층 온수 추출에 관한 연구 (Thermally Stratified Hot Water Extraction)

  • 박이동;정운철;성상우
    • 태양에너지
    • /
    • 제11권2호
    • /
    • pp.34-40
    • /
    • 1991
  • Thermal stratification enhancement for the higher extraction efficiency of hot water storage tank was experimentally studied with transparent fiber glass cylindical tank($350{\ell}$, D=516mm, H=1680mm). Height to diameter ratio (H/D =1,2,3), flow rate(Q= 8,10,12LPM), inlet-outlet temperature differences(${\Delta}T=20,25,30^{\circ}C$), and geometry of inlet-outlet port were the parameters. In particular, three kind of distributors were used for geometry of inlet-outlet port. As a result, it was possible to get extraction efficiency of 95% by using the distributor having variable diameter but keeping a constant diameter of perforation. So it is recommendable to design the distributor so that the main pipe decrease in diameter toward the dead end.

  • PDF

주거용건물의 바닥복사 난방방식에 대한 실태조사 연구 (Research on the actual condition of 'Under Floor Radiant Heating for Apartment Housing')

  • 우병관;이성;김삼열
    • KIEAE Journal
    • /
    • 제7권5호
    • /
    • pp.81-86
    • /
    • 2007
  • The research analyzes the arrangement of boiler and hot water header, the method of radiator pipe setting, hot water supply control, hourly heating situation of each room for underfloor radiant heating systems in Korea and suggests an alternative to improve to efficient heating method. One of the best options for install position of hot water distributor is under kitchen sink which is center point of all rooms, according to previous research of the energy saving strategies. When the radiator pipes are arranged to each individual room instead of bedrooms through livingroom and kitchen, it has energy saving effects. For rooms without occupancy according to a time period, hot water supply method should be intermittent heating rather than continuous heating. For this intermittent heating method, individual control of hot water supply is more practical, and it can lead to massive energy savings. The intermittent heating system has time-lag, so it is more effective in energy saving with mild and comfort condition if the spaces are preheated by automatic control equipment prior to required time.