• Title/Summary/Keyword: Hot temperature

Search Result 4,011, Processing Time 0.03 seconds

Temperature and Compositional Characteristics of the Hot Spring Water in Korea (우리나라 온천의 온도 및 성분 특징)

  • Lee, Cholwoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.121.1-121.1
    • /
    • 2010
  • We analyzed the temperature and chemical composition of 376 hot springs in Korea. It took about three days for the temperature to stabilize after the pumping test. After the stabilization, in-situ and laboratory analyses of the hot spring water were carried out. The average temperature and TDS were $29.95^{\circ}C$ and 2,071mg/L, respectively. The temperature ranging $25-30^{\circ}C$ were recorded from 70% of hot springs, and $30-35^{\circ}C$ of 15.4%. The maximum temperature was about $78^{\circ}C$. The value of TDS in 79% of the wells was below 1,000 mg/L. 5.5% of the wells, mostly developed near seashore, shows higher values than 10,000mg/L of TDS suggesting the influence of seawater. The hot spring water shows 8.49 of pH representing a weak alkali. For the mineral compositions dissolved in the hot spring in Korea, Na (431 mg/L) and Ca (188 mg/L) are the major cations, and Cl (840 mg/L) and $SO_4$ (213 mg/L) are the major anions.

  • PDF

Experimental study on hot-wire type air flow rate measurement system considering ambient temperature compensations (온도보상을 고려한 열선형 공기유량 측정시스템에 관한 실험적 연구)

  • 이민형;유정열;김사랑;고상근;윤준원;김동성
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.62-75
    • /
    • 1991
  • The purpose of this study is to perform modelings and experiments to measure air flow rate using hot-wires and a CTA(Constant Temperature Anemometer). The flow rate can be obtained by measuring the heat loss of the hot-wire due to the variations of flow velocity when the hot-wire is maintained at uniform temperature. But the defect of this method is that the output signal changes not only by the flow rate but also by the ambient temperature. Thus, in the present study, a method which compensates the variations of the ambient temperature has been introduced to measure exact flow rate. To be more specific, the bridge circuit of the usual hot-wire anemometer system has been modified in such a way that a temperature resistance sensor and a variable resistance are placed in one of the legs to compensate the different temperature coefficients of both the hot-wire and the temperature compensating resistance for flow velocity or for flow mass up to the flow temperature of 50 .deg.C. Comparing the modeling and experimental results, it has been shown that the compensating point differs as the flow rate varies. Therefore, optimum compensation points are sought to construct the circuit. The present modeling and experimental results may be applied to the design of actual air flow meters for automobiles.

  • PDF

The Effects of Pass Strain and Rolling Temperature on Flow Stress and Flow Strain of AA5083 Alloy (AA5083 합금의 고온유동응력 및 연신율에 미치는 압연온도와 패스변형량의 영향)

  • 고병철;박도현;유연철
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.169-177
    • /
    • 1999
  • Different pass strains and rolling temperatures were applied to understand the effects of pass strain and rolling temperature on flow stress and flow strain of AA5083 alloy. The specimens were prepared by conventional casting process followed by hot rolling. Hot torsion tests were conducted at temperature ranges of 350 to 52$0^{\circ}C$ under a strain rate of 1.0/sec. During the process, hot-restoration mechanisms, dynamic recovery(DRV) or dynamic recrystallization (DRX), of the AA5083 alloy were analyzed from the flow curves and deformed microstructures. It was found that while the rolling strain per pass and rolling temperature have little effect on the folw stress, they have significant effect on the failure strain. The DRV was responsible for the hot restoration mechanism of the hot-rolled specimen. heavily elongated grains and small subgrains containing dislocations were obtaned during the hot deformation. This was due to the presence of Al6Mn precipitate in the alloy.

  • PDF

A study on the development of constant temperature hot wire type air flow meter for automobiles (자동차용 정온도 열선식 공기유량계의 개발에 관한 연구)

  • 조성권;유정열;고상근;김동성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2407-2414
    • /
    • 1992
  • Constant temperature hot wire air flow meter for automobiles requires temperature compensation system because hot wire output signal is sensitive to ambient temperature variations as well as fluid velocity. The objectives of the present study are to design an air flow meter circuit which is capable of compensating the hot wire output signal for ambient temperature variations and to investigate the mechanism of such temperature compensation. This circuit is composed of platinum hot wire, platinum resistor, two variable resistors, a constant resistor and a DC-amplifier. In particular, by simply replacing a constant resistor in one of the bridge arms of the conventional circuit with platinum resistor and a variable resistor for the purpose of temperature compensation, the deviation of output signal with respect to ambient temperature variations between 27deg. C 70deg. C could be reduced to less than 2.5% for mass flow rate and to less than 5% for velocity respectively. The mechanism of temperature compensation against ambient temperature variations was explained by means of measuring the heat transfer coefficient with hot wire temperature variations and analyzing and analyzing conventional empirical equations qualitatively.

Temperature Measurement of the Contact Surface from the Analysis of Temperature Distribution of the Hot Spots (열원의 온도분포 해석을 통한 접촉표면의 온도측정)

  • 정동윤
    • Tribology and Lubricants
    • /
    • v.9 no.1
    • /
    • pp.16-21
    • /
    • 1993
  • A method has been developed to measure the surface temperature in a sliding tribosystem. The determination of the surface temperature was inferred from the temperature of hot spots which were generated by frictional heat. The temperature of hot spots was determined by regressing those digitized data on Gecim-Winer's theoretical model. The experimental results are discussed considering the important factors such as PV and frictional heat. The surface temperature rise is related to the thermal conductivity in low PV range. As PV increases, it reaches nearly constant value called the critical temperature.

Study on Adhesive Properties by Hot-air Welding of Polyvinyl Chloride Waterproof Sheet Using used vinyl & used cable in Rural Area (농촌의 폐비닐과 폐전선을 활용한 폴리염화비닐 방수시트의 열풍용착에 의한 접착특성에 관한 연구)

  • Ko, Jin-Soo;Kim, Byung-Yun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.16 no.4
    • /
    • pp.75-81
    • /
    • 2014
  • In this study, we have intended to provide the related construction manuals with technical materials and to reduce the defects in the on-site construction, with reviewing the adhesive properties of joint parts according to change of temperature and speed of hot-air sealer for the products that have been made of polyvinyl chloride(PVC) materials in the single waterproof sheet. The result from the experiment is shown as following. 1) Bond strength was shown as high as the welding speed became slower. For the hot-air welding velocity with 3~6m/min, a stable bond strength has been shown in the range of the hot-air welding temperature with $175{\sim}210^{\circ}C$, while it has been shown in the range of the hot-air welding temperature with $210^{\circ}C$, when the hot-air welding velocity is between 9~12m/min. 2) If the hot-air welding temperature is lower, the adhesive strength has been shown as higher in the section where the hot-air welding velocity is low, while the adhesive strength has been also shown as higher in the section where the velocity is fast as the hot-air welding temperature becomes higher. The highest bond strength has been shown in the velocity with 3m/min for the hot-air welding temperature with $140{\pm}10^{\circ}C$, which is rather low. At $175{\pm}10^{\circ}C$, a high bond strength has been shown in the velocity with 3~6m/min, while the high bond strength has been shown in the velocity with 6~9m/min at $210{\pm}10^{\circ}C$.

Effect of Hot Environment on the Body Temperature and Plasma Cortisol Concentration in Ruminant (高溫環境이 反芻家畜의 체온 및 혈장 Cortisol 농도에 미치는 影響)

  • Chung, Tae-Young;Yang, Young-Jik;Lee, Sang-Rak;Yoon, Hee-Sup
    • Journal of Animal Environmental Science
    • /
    • v.1 no.1
    • /
    • pp.39-45
    • /
    • 1995
  • Temperatures of blood and skin, respiratory rate and plasma cortisol concentration in sheep at a warm (average ambient temperature of $15.3^{\circ}C$) and a hot (average ambient temperature of $27.0^{\circ}C$ environment were measured to investigate the effect of hot environment on the physiological responses in ruminant. Temperatures of core, mean skin and mean body in sheep were tended to increase at day time and to decrease at night time at both warm and hot environment, while 24-hr average for those temperatures were significantly higher at hot environment than at warm environment (P<0.05). The calculated body heat content was higher in sheep at hot environment than at warm environment (P<0.05). Respiratory rate and plasma cortisol concentration had no significant differences between warm and hot environment, suggesting that sheep were not stress by the hot environment in this experiment. It is, therefore, suggested that sheep were well adopted to hot environment by increasing body heat content against heat stress.

  • PDF

Effects of Soup Temperature on Hunger, Energy and Nutrient Intake (국의 온도가 공복감, 열량 및 영양소 섭취량에 미치는 영향)

  • 김석영;장희애;김주영;박경민
    • Journal of Nutrition and Health
    • /
    • v.36 no.8
    • /
    • pp.859-869
    • /
    • 2003
  • The purpose of this study was to compare the effects of soup temperature on hunger, energy, and nutrient intake. The hot meal consisted of 400 g of hot beef-vegetable soup (75$^{\circ}C$), Yubu Chobap, Bulgogi, cucumber pickle and radish pickle. The cold meal component were the same as the hot meal except 300 g of water (8$^{\circ}C$) and boiled vegctables (100 g), instead of the hot beef-vegetable soup ot the hot meal. Thirst, core temperature and blood pressure were also measured before and after consumption the test meals in a within-subjects, repeated measures design. 30 women consumed 17% more kilocalories, 13% more protein and lipid and 16% more carbohydrate in the cold meal than in the hot meal. The core temperature at the end of the test meal was higher in the hot meal than in the cold meal. Energy and nutrient intake were inversely correlated with the hunger scores within 1 hour after the hot meal, however those are not related with each other in the cold meal. So hunger feeling might be disturbed in the cold meal. It is concluded that energy and nutrient consumptions were higher in the cold meal, partly because of the distrubed hunger feeling in the cold meal.

Study on the Operating Characteristics with Load Condition in Hybrid Solar Heating System during Spring Season (봄철 태양열 하이브리드 시스템의 부하조건 변화에 따른 운전특성 연구)

  • Pyo, Jong-Hyun;Kim, Won-Seok;Cho, Hong-Hyun;Ryu, Nam-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1418-1423
    • /
    • 2009
  • This study describes experimental study on the performance characteristics with load condition in hybrid solar heating system during spring season. The room temperatures, the hot water conditions and the lower part temperatures of heat storage tank were changed to analyze the system performances. As a results, the hot water was significantly affected by the ambient temperature. The indoor setting temperature affected the solar fraction. When the low part temperature of the storage tank increased, the temperature of the hot water rose and the temperature of the hot water in morning was affected by the ambient temperature.

  • PDF

Study on Improvement of Surface Temperature Uniformily in Flate-Plate Heat Pipe Hot Chuck (평판형 히트파이프식 핫척의 표면온도 균일화 향상을 위한 연구)

  • Kim, D.H.;Rhi, S.H.;Lim, T.K.;Lee, C.G.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2369-2374
    • /
    • 2008
  • In the precision hot plate for wafer processing, the temperature uniformity of upper plate surface is one of the key factors affecting the quality of wafers. Precision hot plates require temperature variations less than ${\pm}1.5%$ during heating to $120^{\circ}C$. In this study, we have manufactured the flat plate heat pipe hot chuck of circle type(300mm) and investigated the operating characteristics of flat plate heat pipe hot chuck experimentally. Various liquids(aceton, FC-40, water) were used as the working fluid and charging ratio was changed($14{\sim}36\;vol.%$). Several cases were tested to improve temperature uniformity. Major working fluid to be investigated was water. Using water, various parameters such as charging ratio, wafer operation on-off time, different working fluids. In case of water, the temperature uniformity was ${\pm}1.5%$, response time of wafer were investigated.

  • PDF