• Title/Summary/Keyword: Hot surface

Search Result 1,464, Processing Time 0.025 seconds

Improvement of Corrosion Resistance by Mg Films Deposited on Hot Dip Aluminized Steel using a Sputtering Method (용융알루미늄 도금 강판 상에 스퍼터링법으로 형성된 마그네슘 코팅막에 의한 내식성 향상)

  • Park, ae-Hyeok;Kim, Soon-Ho;Jeong, Jae-In;Yang, Ji-Hoon;Lee, Kyung-Hwang;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.224-230
    • /
    • 2018
  • In this study, Mg films were prepared on hot dip aluminized steel (HDA) by using a sputtering method as a high corrosion resistance coating. The corrosion resistance of the Mg films was improved by controlling the morphology and the crystal structure of films by adjusting the Ar gas pressure during the coating process. Anodic polarization measurement results confirm that the corrosion resistance of the Mg films was affected by surface morphology and crystal structure. The corrosion resistance of the Mg coated HDA specimen increased with decreasing crystal size of the Mg coating and it was also improved by forming a film with denser morphology. The crystal structure oriented at Mg(101) plane showed the best corrosion resistance among crystal planes of the Mg metals, which is attributed to its relatively low surface energy. Neutral salt spray test confirmed that corrosion resistance of HDA can be greatly improved by Mg coating, which is superior to that of HDG (hot dip galvanized steel). The reason for the improvement of the corrosion resistance of Mg films on hot dip aluminized steel was due to the barrier effect by the Mg corrosion products formed by the corrosion of the Mg coating layer.

A study on Effect of Surface ion Implantation for Suppression of Hot carrier Degradation of LDD-nMOSFETs (LDD-nMOSFET의 핫 캐리어 열화 억제를 위한 표면 이온주입 효과에 대한 연구)

  • Seo, Yong-Jin;An, Tae-Hyun;Kim, Sang-Yong;Kim, Tae-Hyung;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.735-736
    • /
    • 1998
  • Reduction of hot carrier degradation in MOS devices has been one of the most serious concerns for MOS-ULSIs. In this paper, three types of LDD structure for suppression of hot carrier degradation, such as spacer-induced degradation and decrease of performance due to increase of series resistance will be investigated. LDD-nMOSFETs used in this study had three different drain structure. (1) conventional ${\underline{S}}urface$ type ${\underline{L}}DD$(SL), (2) ${\underline{B}}uried$ type ${\underline{L}}DD$(BL), (3) ${\underline{S}}urface$urface ${\underline{I}}mplantation$ type LDD(SI). As a result, the surface implantation type LDD structure showed that improved hot carrier lifetime to comparison with conventional surface and buried type LDD structure.

  • PDF

Prediction of Plastic Deformation Behavior of the Side Surface of Slab during Hot Rough Rolling (열간 조압연 공정에서 슬래브 측면부의 소성변형거동 예측)

  • Jeong, J.H.;Lee, K.H.;Lee, S.B.;Lee, I.K.;Lee, S.H.;Kim, H.J.;Lee, K.Y.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.23 no.7
    • /
    • pp.425-430
    • /
    • 2014
  • The aim of the current study was to predict the plastic deformation behavior of a heated slab during hot rough rolling. FE-simulations were performed to investigate the metal flow and to locate the position of surface material from the slab through the rough rolling and onto the strip, using a material point tracking technique. In addition, experimental hot rolling trials were conducted where artificial defects were impressed onto a heated slab in order to validate the FE-simulation results. The simulated results show the same tendency of deformation behavior as the experimental measurements. The movement of slab defects from the side surface towards the strip center is directly linked to the extent of lateral spread during the rolling.

Characteristics of carbon Nanotubes grown by Hot Filament Plasma Enhanced Chemical Vapor Deposition method with iron(III) nitrate metal oxide concentration (Hot filament 화학기상증착법을 이용한 질산화철 촉매농도에 따른 탄소나노튜브의 성장 특성)

  • Jung, Kyung-Ho;Cho, Won-Seok;Kim, Hyung-Jin;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.328-331
    • /
    • 2004
  • Hot filament 플라즈마 화학기상 증착법(HFPECVD)를 사용하여 질산화철의 농도에 따른 탄소나노튜브의 성장 특성을 관찰하기 위해 실험을 진행하였다. 암모니아($NH_3$)를 희석가스로 사용하였고, 아세틸렌($C_2H_2$)를 탄소 원료가스로 각각 사용하였다. 암모니아 가스 플라즈마를 사용하여 전처리 된 질산화철 촉매층의 SEM(Scanning Electron Microscopy) 이미지를 관찰하여 본 결과, 나노 사이즈의 촉매 그레인(grain)을 발견할 수 있었다. 그리고 탄소 나노튜브의 직경과 성장 밀도 또한 전처리 된 촉매 층에 따라 다른 양상을 보였다. TEM(Transmission Electron Microscopy)를 사용하여 탄소나노튜브를 관찰한 결과 bamboo 구조를 한 다중벽 탄소 나노튜브(MWCNT)를 관찰할 수 있었다.

  • PDF

The Characteristics of Vacuum Drying Heated by Hot Plates for the Thinned Logs and Pillars of Korean Pine (잣나무 간벌(間伐)통나무와 수심재(髓心材)의 가열판식(加熱板式) 진공건조(眞空乾燥) 특성)

  • Jung, Hee-Suk;Lee, Nam-Ho;Park, Jung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.51-60
    • /
    • 1997
  • We investigated the characteristics of air-and vacuum-drying heated by hot plates for 8~14cm-diameter logs or 6~12cm-thick pillars of Pinus koraiensis. And we evaluated the effects of longitudinal kerf and vacuum drying heated by hot plates. The vacuum drying times from green to 10.9~18.6% MC were 15 days, and these times were one-fifth compared to the air-drying times. The longitudinal kerfing had no significant, effect on drying rates during both air-drying and vacuum drying. But drying defects such as surface checks and V-shaped cracks were effectively prevented during air-drying and vacuum drying by longitudinal kerfing. The vacuum drying was more advantageous than air-drying for preventing of surface checks, end checks and V-shaped cracks, and especially, the vacuum dried pillars with longitudinal kerf were almost free from drying defects. In accelerated weathering conditions the resin did not exude for all specimens.

  • PDF

Numerical simulation of hot embossing filling (핫엠보싱 충전공정에 관한 수치해석)

  • Kang T. G.;Kwon T. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF

Oscillatory Thermocapillary Flow in Cylindrical Columns of High Prand시 Number Fluids

  • Lee, Kyu-Jung;Yasuhiro Kamotani;Simon Ostrach
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.764-775
    • /
    • 2001
  • Oscillartory thermocapillary flow of high Prandtl number fluids in the half-zone configuration is investigated. Based on experimental observations, one oscillation cycle consists of an active period where the surface flow is strong and the hot corner region is extended and a slow period where the opposite occurs. It is found that during oscillations the deformation of free surface plays an important role and a surface deformation parameter S correlates the experimental data well on the onset of oscillations. A scaling analysis is performed to analyze the basic steady flow in the parametric ranges of previous ground-based experiments and shows that the flow is viscous dominant and is mainly driven in the hot corner. The predicted scaling laws agree well with the numerical results. It is postulated that the oscillations are caused by a time lag between the surface and return flows. A deformation parameter S represents the response time of the return flow to the surface flow.

  • PDF

A study hot-carrier degradation on submicron devices (Submicron device에서의 hot-carrier 열화에 관한 연구)

  • 이용희;김현호;최영규;이천희
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.867-870
    • /
    • 1998
  • In this paper we simulated 0.30um NMOS transitor to analysis hot carrier degradation depend on As, As+P, P LDD structure. As a result we obtained As+P LDD structure was good hot carrier immunity. Also we find that hog carrier life time improved a sincresing P dose due to P dose helps in grading the nLDD junction. However As-only junction was poor due to junction high peak position located near the surface.

  • PDF

Tool life Evaluation of Hot Forging about Plastic Deformation and Wear (소성변형 및 마멸을 고려한 열간 단조 금형의 수명 평가)

  • 이현철;김동환;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.163-168
    • /
    • 2002
  • Hot forging is widely used in the manufacturing of industry machine component. The mechanical, thermal load and thermal softening which are happened by the high temperature in hot forging process. Tool life decreases considerably due to the softening of the surface layer of a tool caused by a high thermal load and long contact time between the tool and billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. These are one of the main factors affecting die accuracy and tool life. That is because hot forging process has many factors influencing tool life, and there was not accurate in-process data. In this research, life prediction of hot forging tool by wear and plastic deformation analysis considering tempering parameter has been carried out for automobile component. The new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

  • PDF

Experimental and FE Analyses of Hot Curvature-Forming for Aluminum Thick Plate Using Grid-Typed Hybrid Die (격자형 하이브리드 금형에 의한 열간 알루미늄후판 곡면성형공정해석 및 실험)

  • Lee, I.K.;Lee, J.M.;Son, Y.K.;Lee, C.J.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.316-323
    • /
    • 2011
  • The hot curvature-forming of large aluminum thick plate using a grid-typed hybrid die is a process for the production of a spherical LNG tank. Many variables such as the initial die surface quality, grid size, grid thickness, size of blank plate and cooling line design, control the success of the process. In addition, the plate used in this process is generally larger than $10{\times}10m$ in size. Thus, it is very difficult to predict the surface characteristics of the plate during forming and to measure the different parameters due to the high cost of the experiments. In order to optimize the process design for the grid-type die, the development of an analytical method to predict the surface characteristics of the final product in hot curvature-forming is needed. This paper described the development of the method and procedures for FE simulations of the hot curvature-forming process, including hot forming, air flow, cooling, and thermal deformation analyses. An experiment for a small scale model of the process was conducted to check the validity of the numerical method. The results showed that the curvature of the plate in the analysis agrees well with that of the experiment within 0.037 and 0.016% tolerance margins for its side and corner, respectively.