• 제목/요약/키워드: Hot spot

검색결과 613건 처리시간 0.03초

Comparison of Fatigue Provisions in Various Codes and Standards -Part 1: Basic Design S-N Curves of Non-Tubular Steel Members

  • Im, Sungwoo;Choung, Joonmo
    • 한국해양공학회지
    • /
    • 제35권2호
    • /
    • pp.161-171
    • /
    • 2021
  • For the fatigue design of offshore structures, it is essential to understand and use the S-N curves specified in various industry standards and codes. This study compared the characteristics of the S-N curves for five major codes. The codes reviewed in this paper were DNV Classification Rules (DNV GL, 2016), ABS Classification Rules (ABS, 2003), British Standards (BSI, 2015), International Welding Association Standards (IIW, 2008), and European Standards (BSI, 2005). Types of stress, such as nominal stress, hot-spot stress, and effective notch stress, were analyzed according to the code. The basic shape of the S-N curve for each code was analyzed. A review of the survival probability of the basic design S-N curve for each code was performed. Finally, the impact on the conservatism of the design was analyzed by comparing the S-N curves of three grades D, E, and F by the five codes. The results presented in this paper are considered to be a good guideline for the fatigue design of offshore structures because the S-N curves of the five most-used codes were analyzed in depth.

A356 합금 시편의 수축공 결함형상에 대한 피로해석용 형상 모델링 방법 (On Shrinkage Cavities Shape Modeling for Fatigue Simulation of A356 Alloy Specimen)

  • 곽시영;조인성
    • 한국주조공학회지
    • /
    • 제39권1호
    • /
    • pp.1-6
    • /
    • 2019
  • During the casting process, it is possible to minimize shrinkage and blowholes by modifying the casting design. However, it is impossible to eliminate these factors completely. Therefore, mechanical design engineers apply a sufficient safety factor owing to the possibility of insufficient performances of the cast products. In this paper, prediction method of the fatigue life of cast products containing shrinkage is conducted by using CT (computed tomography) and the SSM (shape simplification method), and additional fatigue analyses are carried out. The analysis results are then compared to results from actual experiments on samples with shrinkage defects. It is found to be that the considering actual shrinkage in cast products by means of stress and fatigue analyses is more accurate and effective. It is also considered that the proposed hot spot method provides us a good tool to predict the fatigue lifes of cast product.

Analyzing the Evolution of Summer Thermal Anomalies in Busan Using Remote Sensing and Spatial Statistical Tool

  • Njungwi, Nkwain Wilfred;Lee, Daeun;Kim, Minji;Jin, Cheonggil;Choi, Chuluong
    • 대한원격탐사학회지
    • /
    • 제37권4호
    • /
    • pp.665-685
    • /
    • 2021
  • This study focused on the a 20-year evaluation of the dynamism of critical thermal anomalies in Busan metropolitan area prompted by unusual infrastructural development and demographic growth rate. Archived Landsat thermal data derived-LST was the major input for UTFVI and hot spot analysis (Getis-Ord Gi*). Results revealed that the surface urban heat island-affected area has gradually expanded overtime from 23.32% to 32.36%; while the critical positive thermal anomalies (level-3 hotspots) have also spatially increased from 19.88% in 2000 to 23.56% in 2020, recording a net LST difference of > 5℃ between the maximum level-3 hotspot and minimum level-3 coldspot each year. It is been observed that thermal conditions of Busan have gradually deteriorated with time, which is potentially inherent in the rate of urban expansion. Thus, this work serves as an eye-opener to powers that be, to think and act constructively towards a sustainable thermal conform for city dwellers.

Fatigue Strength and Root-Deck Crack Propagation for U-Rib to Deck Welded Joint in Steel Box Girder

  • Zhiyuan, YuanZhou;Bohai, Ji;Di, Li;Zhongqiu, Fu
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1589-1597
    • /
    • 2018
  • Fatigue tests and numerical analysis were carried out to evaluate the fatigue performance at the U-rib to deck welded joint in steel box girder. Twenty specimens were tested corresponding to different penetration rates (80 and 100%) under fatigue bending load, and the fatigue strength was investigated based on hot spot stress (HSS) method. The detailed stress distribution at U-rib to deck welded joint was analyzed by the finite element method, as well as the stress intensity factor of weld root. The test results show that the specimens with fully penetration rate have longer crack propagation life due to the welding geometry, resulting in higher fatigue failure strength. The classification of FAT-90 is reasonable for evaluating fatigue strength by HSS method. The penetration rate has effect on crack propagation angle near the surface, and the 1-mm stress below weld toe and root approves to be more suitable for fatigue stress assessment, because of its high sensitivity to weld geometry than HSS.

ONAN 모드 4250kVA 변압기의 구조 건전성과 냉각 성능의 평가 (Evaluation of Structural Integrity and Cooling Performance of 4250 kVA Power Transformer with ONAN Mode)

  • ;김성익;조종래
    • 한국기계가공학회지
    • /
    • 제20권7호
    • /
    • pp.48-57
    • /
    • 2021
  • The main research content of this paper is to evaluate the structural integrity and the cooling performance of 4250 kVA power transformer with ONAN(Oil Natural and Air Natural) mode. The dynamic analysis is used to verify the structural safety of the transformer by seismic loading. The transformer structure is simplified and NX software is used to build a three-dimensional model, and ANSYS commercial software is used to calculate the stress and deformation by applying corresponding load. The analysis result was evaluated whether it satisfies the design requirements according to the IEEE Std 693 standard. In terms of thermal analysis to evaluate the cooling performance, the thermal physical model is used to calculate the heat exchange between the radiator and the tank in the steady state, and the result is input into the Fluent software to calculate the internal temperature field of the transformer tank, which reduces the calculation cost of thermal fluid. Comparing the simulated hot spot temperature and top oil temperature of the transformer with the calculation results of the IEC60076 classic model, it is found that the error is only 1.9%.

태양광 시스템의 미션 프로파일 고려한 3-레벨 NPC 인버터의 DC-link 커패시터 신뢰성 비교 분석 (Comparative Reliability Analysis of DC-link Capacitor of 3-Level NPC Inverter Considering Mission-Profiles of PV Systems)

  • 최재헌;최의민
    • 전력전자학회논문지
    • /
    • 제27권6호
    • /
    • pp.535-540
    • /
    • 2022
  • DC-link capacitors are reliability-critical components in a photovoltaic (PV) inverter. Typically, the lifetime of a DC-link capacitor is evaluated by considering the voltage and hot-spot temperature of the capacitor under the specific operating condition of the PV inverter. However, the output of the PV inverter is determined by solar irradiation and ambient temperature, which vary with the seasons; accordingly, the hot-spot temperature of the capacitor also changes. Therefore, the mission profile of the PV system should be considered to effectively evaluate the reliability of the DC-link capacitor. In this study, the reliability of the DC-link capacitor of a three-level NPC inverter is comparatively analyzed with and without considering the mission profiles of the PV system, where two mission profiles recorded in Arizona and Iza are considered. The accumulated damage of the DC-link capacitor is calculated based on the lifetime model by analyzing its thermal loading. Afterward, a reliability evaluation of the DC-link capacitor is performed at the component level and then at the system level by considering all capacitors by means of Monte Carlo analysis. Results reveal the importance of performing a mission-profile-based reliability evaluation during the design of high-reliability PV inverters to achieve the target reliability performance.

Feasibility study on fiber-optic inorganic scintillator array sensor system for multi-dimensional scanning of radioactive waste

  • Jae Hyung Park;Siwon Song;Seunghyeon Kim;Jinhong Kim;Seunghyun Cho;Cheol Ho Pyeon;Bongsoo Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3206-3212
    • /
    • 2023
  • We developed a miniaturized multi-dimensional radiation sensor system consisting of an inorganic scintillator array and plastic optical fibers. This system can be applied to remotely obtain the radioactivity distribution and identify the radionuclides in radioactive waste by utilizing a scanning method. Variation in scintillation light was measured in two-dimensional regions of interest and then converted into radioactivity distribution images. Outliers present in the images were removed by using a digital filter to make the hot spot location more accurate and cubic interpolation was applied to make the images smoother and clearer. Next, gamma-ray spectroscopy was performed to identify the radionuclides, and three-dimensional volume scanning was also performed to effectively find the hot spot using the proposed array sensor.

펄스전류 운전에 따른 KSTAR PF 초전도자석의 퀜치 분석 및 퀜치 검출 시스템 운전 특성 (Quench Analysis and Operational Characteristics of the Quench Detection System for the KSTAR PF Superconducting Coils)

  • 추용;요네가와;김영옥;이현정;박갑래;오영국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.20-25
    • /
    • 2009
  • The quench detection system of the KSTAR (Korea Superconducting Tokamak Advanced Research) primarily uses the resistive voltage measurement due to a quench. This method is to detect the resistive voltage generated by a quench, which is continuously maintained above the preset voltage threshold for a given holding time. As the KSTAR PF (Poloidal Field) coils are operated in the pulse current mode, the large inductive voltages are generated. Therefore the voltage threshold and the quench holding time should be determined by considering both the inductive voltages measured during the operation, and the maximum conductor temperature rise through the quench analysis. In this paper, the compensation methods for minimizing the inductive voltages are presented for the KSTAR PF coils. The quench hot spot analysis of the PF coils was carried out by the analytical and numerical methods for determining the proper values of the quench voltage threshold and the allowable quench protection delay time.

Extreme drought analysis using Natural drought index and Gi∗ statistic

  • Tuong, Vo Quang;So, Jae-Min;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.124-124
    • /
    • 2020
  • This study proposes a framework to evaluate extreme drought using the natural drought index and hot spot analysis. The study area was South Korea. Data were used from 59 automatic synoptic observing system stations. The variable infiltration capacity model was used for the period from 1981 to 2016. The natural drought index was constructed from precipitation, runoff and soil moisture data, which reflect the water cycle. The average interval, duration and severity of extreme drought events were determined following Run theory. The most extreme drought period occurred in 2014-2016, with 46 of 59 weather stations exhibition drought conditions and 78% exhibition extreme drought conditions. The Inje and Seosan station exhibited the longest drought duration of 6 months, and the most severe drought was 5 times higher than the extreme drought severity threshold. The hot spot analysis was used to explore the extreme drought conditions and showed an increasing trend in the middle and northeastern parts of South Korea. Overall, this study provides water resource managers with essential information about locations and significant trends of extreme drought.

  • PDF

Research on stress distributions around welds of three-planar tubular Y-joints under out-of-plane bending moment

  • Shiliu Bao;Wenhua Wang;Jikai Zhou;Xin Li
    • Steel and Composite Structures
    • /
    • 제49권2호
    • /
    • pp.181-196
    • /
    • 2023
  • Marine structures including offshore wind turbines (OWTs) always work under cyclic loads, which arouses much attention on the fatigue design. The tripod substructure is one of the typical foundation forms for fixed OWTs. The three-planar tubular Y-joint (3Y joint) is one of the important components in fatigue design as it is most likely to have cracks. With the existence of the multiplanar interaction effect, calculating the hot spot stress (HSS) of 3Y joints is complicated. To assist with fatigue design, the distributions of stress concentration factor (SCF) and multiplanar interaction factor (MIF) along weld toe curves induced by the out-of-plane bending moment are explored in this study. An FE analysis method was first developed and verified against experimental results. This method was applied to build a numerical database including 1920 FE models covering common ranges of geometric parameters. A parametric study has been carried out to reveal the distribution patterns of SCF and MIF. After multidimensional nonlinear fittings, SCF and MIF distribution formulas have been proposed. Accuracy and reliability checking prove that the proposed formulas are suitable for calculating the HSS of 3Y joints.