• Title/Summary/Keyword: Hot restoration mechanism

Search Result 7, Processing Time 0.02 seconds

A Study on Hot Deformation Behavior of $SiC_p$/AI2024 Composites Reinforced with Different Sizes of $SiC_p$ ($SiC_p$ 크기를 달리한 $SiC_p$/Al2024 복합재료의 열간 변형특성에 관한연구)

  • Ko, Byung-Chul;Hong, Heung-Ki;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.158-167
    • /
    • 1998
  • Hot restoration mechanism flow stress and stain of the Al2024 composites reinforced with 1,8,15,36, and $44{\mu}m\;SiC_p$(10 vol. %) were studied by hot torsion tests. The hot restoration mechanism of all the composites was found to be dynamic recrystallization(DRX) at $320^{\circ}C$ while that of the composites reinforced with 1 and $8{\mu}m\;SiC_p$ was found to be dynamic recovery(DRX) at $480^{\circ}C$. It was found that the Al2024 composite with $15{\mu}m\;SiC_p$ showed the highest flow stress(${\sim}$223 MPa) at $320^{\circ}C$ under a strain rate of 1.0/sec. Also the highest flow strain of the composites was obtained at $430^{\circ}C$. The com-posites reinforced with 1 and $8{\mu}m\;SiC_p$ showed lower flow stress and higher flow strain at $480^{\circ}C$ than those of the composites reinforced with 15, 36, and $44\;{\mu}m\;SiC_p$ These result were discussed in relation to the transition of the hot restoration mechanism. $DRX{\leftrightarrow}DRV$. The dependence of flow stress on strain rate and temperature was attempted to fit with the hyperbolic sine equation ($\dot{\varepsilon}=A[sinh({\alpha}{\cdot}{\sigma}_p]^n$ exp(-Q/RT)and Zener-Hollomon parameter($Z=\;\dot{\varepsilon}\;exp(Q/RT))$.

  • PDF

The Effects of Pass Strain and Rolling Temperature on Flow Stress and Flow Strain of AA5083 Alloy (AA5083 합금의 고온유동응력 및 연신율에 미치는 압연온도와 패스변형량의 영향)

  • 고병철;박도현;유연철
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.169-177
    • /
    • 1999
  • Different pass strains and rolling temperatures were applied to understand the effects of pass strain and rolling temperature on flow stress and flow strain of AA5083 alloy. The specimens were prepared by conventional casting process followed by hot rolling. Hot torsion tests were conducted at temperature ranges of 350 to 52$0^{\circ}C$ under a strain rate of 1.0/sec. During the process, hot-restoration mechanisms, dynamic recovery(DRV) or dynamic recrystallization (DRX), of the AA5083 alloy were analyzed from the flow curves and deformed microstructures. It was found that while the rolling strain per pass and rolling temperature have little effect on the folw stress, they have significant effect on the failure strain. The DRV was responsible for the hot restoration mechanism of the hot-rolled specimen. heavily elongated grains and small subgrains containing dislocations were obtaned during the hot deformation. This was due to the presence of Al6Mn precipitate in the alloy.

  • PDF

Effect of Hot Interrupted strain on Static Softening of Single Phase Cu-Zn Alloy (고온단속변형량이 단상 Cu-Zn합금의 정적연화에 미치는 영향)

  • 권용환;조상현;유연철
    • Transactions of Materials Processing
    • /
    • v.4 no.2
    • /
    • pp.169-179
    • /
    • 1995
  • Static restoration mechanism during hot interrupted deformation of Cu-Zn alloy was studied in the temperature range from $550^{\circ}C$ to $750^{\circ}C$ and at a constant strain rate of 0.1/sec. At a given temperature, the hot interrupted deformations were performed with variation of interrupted time $t_i$ form 1 to 50 sec and of interrupted strain ${\varepsilon}_i$ from 0.15 to 0.90. From the analysis of the values of the critical strain of ${\varepsilon}_c$ for tje initiation of dynamic recrystallization and the peak strain of${\varepsilon}_p$, the relationship ${\varepsilon}_c{\fallingdotseq}0.7{\varepsilon}_p$ was obtained. It was clarified that the softening of the interrupted deformation was mainly the static recrystallization and the fractional softening(FS) which was over 30% mostly confirmed this result. The fractional softening of the interrupted time $t_i$ especially and pre-strain. The FS increased with increasing strain rate, interrupted time and pre-strain. The change of microstructures after hot deformation could be predicted by the FS. when the FS was 30~100%, static recrystallization was happened and grain growth was observed at the condition which was $750^{\circ}C$ deformation temperature, 0.45 prestrain and this condition's FS value was over 100%.

  • PDF

The Effects of Temperature and Strain Rate on Flow Stress and Strain of AA5083 Alloy during High Temperature Deformation (AA5083 합금의 고온 변형시 유동응력 및 연신율에 미치는 온도와 변형 속도의 영향)

  • Ko, Byung-Chul;Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.168-176
    • /
    • 1998
  • Hot workability of the AA5083 alloy ws investigated by torsion test at temperature ranges of $350{\sim}520^{\circ}C$ and strain rates of 0.5, 1.0, and 3.0/sec. The flow stress and hot ductility of the AA5083 alloy as a function of deformation variables such as temperature and train rate were studied. The microstructural evolution of the AA5083 alloy was studied in relation to Zener-Hollomon parameter (Z=exp( /RT) Also the hot restoration mechanism of the AA5083 alloy was small when Z val-ues were higher than $1.73{\times}1016/sec(370^{\circ}C,\;0.5/sec)$ In addition the difference microstructures during hot deformation. It was found that the increase of flow curves and deformed microstructures during hot deformation. It was found that the increase of flow stress of the AA5083 alloy was small when Z val-ues were higher than $1.73{\times}1016/sec(370^{\circ}C.\;0.5/sec)$. However under the low Z values less than $1.73{\times}1016/sec(370^{\circ}C,\;0.5/sec)$ the flow stress increase with increasing the Z values. The large dispersoid particles in the matrix grain decreased the flow strain of the AA5083 alloy because it caused the stress concentration during hot deformation.

  • PDF

High Temperature Deformation Behavior of $SiC_p/Al-Si$ Composites ($SiC_p/Al-Si$ 복합재료의 고온변형 특성)

  • 전정식;고병철;김명호;유연철
    • Transactions of Materials Processing
    • /
    • v.3 no.4
    • /
    • pp.427-439
    • /
    • 1994
  • The high temperature deformation behavior of $SiC_p/Al-Si$ composites and Al-Si matrix was studied by hot torsion test in a range of temperature from $270^{\circ}C$ to $520^{\circ}C$ and at strain rate range of $1.2{\times}10_{-3}~2.16{\times}10_{-1}/sec$. The hot restoration mechanisms for both matrix and composites were found to be dynamic recrystallization(DRX) from the investigation of flow curves and microstructural evolutions. The Si precipitates and SiC particles promoted DRX, and the peak strain$({\varepsilon}_p)$ of the composites was smaller than that of the matrix. Flow stresses of $SiC_p/Al-Si$ composites were found to be generally higher than the matrix, but the difference was quite small at higher temperature due to the decrease of capability of load transfer by SiC particles. With increasing temperature, failure strain of matrix and composites are inclined to increase, the increasing value of failure strain for the $SiC_p/Al-Si$ composites was small compared to that of matrix. The stress dependence of both materials on strain rate() and temperature(T) was examined by hyperbolic sine law, $\.{\varepsilon}=A_1[sinh({\alpha}{\cdot}{\sigma})]_n$exp(-Q/RT)

  • PDF

Material model optimization for dynamic recrystallization of Mg alloy under elevated forming temperature (마그네슘 합금의 온간 동적재결정 구성방정식 최적화)

  • Cho, Yooney;Yoon, Jonghun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.263-268
    • /
    • 2017
  • A hot forming process is required for Mg alloys to enhance the formability and plastic workability due to the insufficient formability at room temperature. Mg alloy undergoes dynamic recrystallization (DRX) during the hot working process, which is a restoration or softening mechanism that reduces the dislocation density and releases the accumulated energy to facilitate plastic deformation. The flow stress curve shows three stages of complicated strain hardening and softening phenomena. As the strain increases, the stress also increases due to work hardening, and it abruptly decreases work softening by dynamic recrystallization. It then maintains a steady-state region due to the equilibrium between the work hardening and softening. In this paper, an efficient optimization process is proposed for the material model of the dynamic recrystallization to improve the accuracy of the flow curve. A total of 18 variables of the constitutive equation of AZ80 alloy were systematically optimized at an elevated forming temperature($300^{\circ}C$) with various strain rates(0.001, 0.1, 1, 10/sec). The proposed method was validated by applying it to the constitutive equation of AZ61 alloy.

MANET Certificate Model Using Distributed Partial-Certificate with Cooperation of Cluster Member Node (MANET 환경 하에서 멤버 노드간의 협력에 의해 분산된 인증서를 이용한 인증서비스에 관한 연구)

  • Lee, Dae-Young;Song, Sang-Hoon;Bae, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.206-215
    • /
    • 2007
  • Ad-Hoc network technology is a mobile internet technology of the future that will be used widely not only in Mobile Network but also in Wireless Personal Area Network (WPAN) and Ubiquitous Network For this to occur, distributed routing protocol design, loop prevention for link information reduction in overhead for control messages and route restoration algorithm must be improved or complemented. Security techniques that can guarantee safe com-munication between Ad-Hot nodes net also be provided. This study proposes and evaluates a new authentication mechanism for MANET. The mechanism segregates the roles of certification authority to keep with the dynamic mobility of nodes and handle rapid and random topological changes with minimal over-head. That is, this model is characterized by its high expandability that allows the network to perform authentication service without the influence of joining and leaving nodes. The efficiency and security of this concept was evaluated through simulation.