• Title/Summary/Keyword: Hot plate

Search Result 688, Processing Time 0.028 seconds

Characteristics of a Diesel Spray Impinging on the Hot Plate (고온벽면에 충돌하는 디젤부문의 특성 연구)

  • 문석범;구자예
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.55-65
    • /
    • 1999
  • An experimenta investigation of unsteady impinging DI diesel spray on the unheated plate and heated plate has been conducted in a pressurized chamber using high speed shadowgraphy. The ambient agas pressure was varied using nitrogen with chamber pressure of 1.1MPa, 2.1MPa and 2.6MPa. As the increase of ambient gas pressure of ambient gas pressure, the height of spray is increased if entrainment and circulation . At higher temperature of impinging plate, the radial penetration of the impinging spary is incresed , but the height of impinging spray is decreased.

  • PDF

An Experimental Study on the Performance of Swash Plate Compressor with variations of Oil Charging Conditions (오일 충전량 변화에 따른 사판식 압축기 성능의 실험적 고찰)

  • Kim, Min-Jun;Park, Ik-Seo;Lee, Geon-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.704-709
    • /
    • 2003
  • The automobile air conditioning system generally consists of laminated type evaporator, swash plate type compressor, condenser, expansion valve and receiver drier. A swash plate type compressor has been used widely in automobile air conditioning system since 1955, because of wider operation range and better durability than other type compressors. In this study, the performance of an swash plate type compressor with variations of oil charging conditions has been investigated experimentally using the hot gas system. Further, the effects of varying compressor speed on the performance of the compressor has been discussed.

  • PDF

The Effect of Extraction Conditions and Film Side on the Molecular Conformation of Silk Sericin Film

  • Jo, Yoon Nam;Bae, Do Gyu;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.26 no.2
    • /
    • pp.113-118
    • /
    • 2013
  • In this study, silk sericin films were prepared using different extraction methods, and the molecular conformation of sericin was examined using Fourier-transform infrared spectroscopy with attenuated total reflection geometry. Additionally, the effect of the film side (air-facing side or plate-facing side) on the molecular conformation of the sericin films was investigated. Interestingly, the molecular conformation of the sericin film depended on the film side. The molecular conformation of air-facing side of the sericin film was significantly influenced by extraction solution and time. The ${\beta}$-sheet crystallization and the crystallinity index of the sericin film markedly increased with an increase in the extraction time in hot water. The order of the crystallinity indices for the sericin films obtained with different extraction solutions was as follows: citric acid solution > urea solution >> hot water. In contrast, no remarkable differences were observed in the molecular conformation of the plate-facing side of the sericin film after extraction in hot water for different time periods. Urea and citric acid solution extractions showed remarkably higher crystallinity indices for sericin than those obtained after hot water extraction. However, no significant differences were observed in the crystallinity index of sericin between urea and citric acid solution extraction in plate-facing side of the film.

Development of Thermal Performance Tester for Non-Homogeneous Insulation Pannels Installed Vertically (수직으로 설치된 비균질 평판 단열재용 성능시험장치 개발)

  • Oh, Hong Young;Song, Ki O;Jeon, Hyun Ik;Cho, Sun Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.4
    • /
    • pp.153-157
    • /
    • 2016
  • In case of metal insulation, which is produced by stacking stainless steel sheets and air layers in a multi-stack manner at a specific thickness, insulation performance will be evaluated based on thermal transmittance rather than the intrinsic physical properties of each material such as thermal conductivity. However, there is no standard for measuring thermal transmittance targeted for non-homogeneous insulation which is used in relatively high temperature conditions such as a power station. In this study, the thermal conductivity of homogeneous insulation acquired by the standardized guard hot plate method and the thermal conductivity of homogeneous insulation measured by the newly developed performance tester were compared to verify the confidence level of the tester. As a result, thermal conductivity acquired by the newly developed thermal transmittance tester was about 6% higher than the thermal conductivity measured by the existing guard hot plate method under the anticipated service temperature conditions.

Numerical Study on Forming Characteristics of Hot Multi-Point Forming Die (수치해석을 이용한 열간 가변금형 성형특성 평가)

  • Lee, I.K.;Lee, S.Y.;Jeong, M.S.;Kim, B.M.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.27 no.4
    • /
    • pp.236-243
    • /
    • 2018
  • A multi-point forming die (MPFD), which has been used for producing curved plates, is capable of forming various curved plates with just one MPFD. However, in real industries, an MPFD is difficult to be adopted since the structural properties, punch strength, elastic recovery correction and dimensional accuracy become problems. In order to overcome these problems, the hot multi-point forming die (HMPFD) was proposed in this study. This HMPFD commonly provide more less spring-back and forming load than conventional MPFD. Nevertheless, this process is very difficult to form the curved plate, because the final curved shape of the plate depends on many process variables such as the punch/nozzle arrangement (height and distance), the radius of punch, contact conditions between plate and punch. In this study, the forming characteristics of HMPFD and conventional MPFD are compared with each other through the finite element analysis.

Development of remote RW technology for fuel multi-pin fabrication (핵연료 멀티핀 제조용 원격 저항용접기술 개발)

  • Kim, Su-Seong;Gu, Dae-Seo;Lee, Jeong-Won;Park, Geun-Il;Jo, Dae-Sik
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.89-91
    • /
    • 2006
  • An analysis of a multi-pin remote welding for a DUPIC fuel fabrication was made to establish the optimum welding processes in a hot cell environment. An initial investigation for hands-on fabrication outside the hot cell was performed, and the constraints of a hot cell welding were considered. Preliminary welding performances to improve the RW process were also examined. The RW process was determined to be the best in a hot cell environment for joining the end plate to the end caps. This paper presents an outline of the developed RW machine for a DUPIC fuel fabrication and compares the characteristics of a Zr-4 end plate welding by using electrical resistance and LB methods. The weld nuggets of RW specimens and torque strengths of resistant and LB welded zones were also investigated.

  • PDF

Numerical and Experimental Investigation of Thermal Behavior of a Radiation Heater for Flip-Chip Bonders (플립칩 본더용 복사형 히터의 열특성 해석 및 시험)

  • Lee, Sang-Hyun;Kwak, Ho-Sang;Han, Chang-Soo;Ryu, Do-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1645-1650
    • /
    • 2003
  • A numerical and experimental study is made of thermal behavior of a hot chuck which is specially designed for flip-chip bonders. The hot chuck consists of radiant heat sources and a heated plate of very high conductivity, which is for achievement of high-speed heat-up. A simplified numerical model is developed to simulate unsteady thermal behavior of the heated plate. Parallel experimental work is also conducted for a prototype of the hot chuck. Based on the experimental data, the numerical model is tuned to improve the reliability and accuracy. Design analysis using the numerical model is conducted. The results of numerical computations illustrate that the radiant heater system adopted in this study satisfies the key design requirements for a high-performance hot chuck.

  • PDF

Cooling Performance of Air/Water Mist Jet Impinging for a Rapid Thermal Annealing System (급속 열처리 시스템을 위한 물/공기 액적류 충돌 제트의 냉각 특성에 관한 연구)

  • Lee, Jun Kyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.68-74
    • /
    • 2015
  • In the present work, a series of numerical calculations have been conducted on the cooling of a hot surface using an air/water mist jet. In some cooling processes, such as in the glass-tempering process, direct contact between the cold water drops and the hot surface should be avoided, because this may cause surface cracks due to the sharp temperature gradients. Thus, the main focus of this study is finding the appropriate operating conditions for maximum cooling without direct contact between the drops and the surface. A series of numerical experiments have been performed, and, at the same time, those results were compared with those of the previous experiments for verification purposes. The effects of droplet impinging velocity, hot plate temperature, and liquid loading ratio for mono-dispersed drops of various sizes were studied in detail.

High Temperature Deformation Resistance of Stainless Steels (스테인레스강의 열간변형저항)

  • 김영환;정병완
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.366-372
    • /
    • 1999
  • The deformation behavior of commercial stainless steels under hot rolling conditions was investigated by means of hot compression tests performed in the temperature range 800$^{\circ}C$ to 1200$^{\circ}C$. The measured flow stress-strain curves were analyzed by using a simple flow stress model. It was found that the reference strength of stainless steels are much higher than that of carbon steel and that nitrogen and molybdenum alloying greatly increases flow stress of austenitic stainless steel. Ferritic and duplex stainless steel showed comparatively low flow stresses. The flow stress model, which correlates the flow stress with temperature and strain rate, was applied to predict roll forces during hot-plate rolling of stainless steels.

  • PDF

A Numerical Study on Flow and Cooling Characteristics of Impinging Jets on a Moving Plate (이동하는 평판에서 충돌제트의 유동 및 냉각 특성에 대한 수치적 연구)

  • Jeon, Jin-Ho;Suh, Young-Ho;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2562-2567
    • /
    • 2008
  • Jet impingement on a moving plate, which is applicable to cooling of hot metals in a steel-making process, is investigated numerically by solving the Navier-Stokes equations in the liquid and gas phases. The liquid-gas interface or free surface is tracked by a level-set method which is improved by incorporating the ghost fluid approach based on a sharp-interface representation. The computations are made for multiple jets as well as a single jet to compare their flow characteristics. Also, the effects of the nozzle pitch, moving velocity of plate and jet velocity on the interfacial motion and the associated flow and temperature fields.

  • PDF