• Title/Summary/Keyword: Hot gas system

Search Result 377, Processing Time 0.025 seconds

Investigation of Heating Performance of Kerosene Fan Heater (석유 홴 히터의 난방 능력 고찰)

  • Kim, Jang-Kweon;Jeong, Kyu-Jo
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.51-60
    • /
    • 1997
  • In this paper, we investigated the heating performance and the basic characteristics required for normal combustion of kerosene fan heater. And also the iso-velocity contours and the iso-temperature contours of hot gas discharged from the exit of kerosene fan heater were analyzed. The experiment was carried out with kerosene fan heater attached to the blow-down-type subsonic wind tunnel with a test section of $240mm{\times}240mm{\times}1200mm$. The purpose of this paper was to obtain the basic data for new design from conventional kerosene fan heater. Consequently it was found that (i) the pressure ratio $P_2/P_1$ had a comparatively constant value of 0.844 according to the increase of the revolution of turbo fan, (ii) the primary excess air ratio had a range of $0.84{\sim}1.11$ during normal combustion, and (iii) the heating performance of kerosene fan heater had a range of $1,494{\sim}3,852kcal/hr$.

  • PDF

A Study on the LRE Thrust Chamber Regenerative Cooling Design (액체로켓엔진 추력실의 재생냉각 기관 설계)

  • Kim, Ji-Hoon;Park, Hee-Ho;Kim, Yoo;Hwang, Soo-Kwon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.4
    • /
    • pp.25-35
    • /
    • 2002
  • A calculation procedure for designing LRE regenerative cooling system is introduced. In LRE thrust chamber, heat is transfered from the hot gas to the wall by convection and radiation, then conduction through the wall and finally convection to the liquid coolant. A cooling channel is designed on the basis of heat transfer rate calculated by using criterial method and integral method. The result is compared with existing Russian cooling channel design code. Also a design logic and quantitative effect of various parameters were introduced to help better understanding for those who is not familiar to LRE system.

Effect of Vanes on Flow Distribution in a Diffuser Type Recuperator Header (디퓨저 타입 레큐퍼레이터 헤더에서 유동분배에 미치는 베인의 영향)

  • Jeong Young-Jun;Kim Seo-Young;Kim Kwang-Ho;Kwak Jae-Su;Kang Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.819-825
    • /
    • 2006
  • In a SOFC/GT (solid oxide fuel cell/gas turbine) hybrid power generation system, the recuperator is an indispensible component to enhance system performance. Since the expansion ratio to the recuperator core is very large, generally, the effective header design to distribute the flow uniformly before entering the core is crucial to guarantee the required performance. In the present study, we focus on the design of a diffuser type recuperator header with a 90 degree turn inlet port. To reduce the flow separation and recirculation flows, multiple horizontal vanes are used. The number of horizontal vanes is varied from 0 to 24. The air flow velocity is measured at 40 points just behind the core outlet by using a hot wire anemometer. Then, the flow non-uniformity is evaluated from the measured flow velocity. The experimental results showed that inlet air velocity did not effect on relative flow non-uniformity. According to increasing the number of horizontal vanes, flow non-uniformity reduced about $40{\sim}50%$ than without using horizontal vanes.

Analysis of Reflux Cooling in the SG U-Tubes Under Loss of RHRS During Midloop Operation with Primary System Partly Open

  • Son, Young-Seok;Kim, Won-Seok;Kim, Kyung-Doo;Chung, Young-Jong;Chang, Won-Pyo
    • Nuclear Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.112-127
    • /
    • 1998
  • The present study is to assess the applicability of the best-estimate thermal-hydraulic codes, RELAP5/MOD3.2 and CATHARE2V1.3U, to the analysis of thermal-hydraulic behavior in PWRs during midloop operation following the loss of RHRS. The codes simulate an integral test, BETHSY 6.94, which was conducted in the large scale test facility of BETHSY in France. The test represents the accident where the loss of RHRS occurs during midloop operation with the pressurizer and upper head vents open and the sight level indicator broken. Besides, the hot legs are half filled with water and the upper parts of the primary cooling system are filled with nitrogen, with a letdown line open and only one SG available. The purposes of this study are to understand the physical phenomena associated with reflux cooling in the 5G U-tubes when noncondensable gas is present under low pressure and to assess the applicability of the codes to simulate the loss of RHRS event by comparing the predictions with the test results. The results of the study may contribute to actual applications for plant safety evaluation and description of the emergency operating procedure.

  • PDF

A Study on Design of the Linear Generator in the Double Acting Stirling Engine (양방향 스털링엔진의 선형발전기 설계에 관한 연구)

  • PARK, SEONGJE;KO, JUNSEOK;HONG, YONGJU;KIM, HYOBONG;YEOM, HANKIL;IN, SEHWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.6
    • /
    • pp.638-644
    • /
    • 2015
  • This paper describes the continuing effort to analysis and design on dynamic and electrical behavior of gamma-type free piston Stirling engine/generator with dual-opposed linear generator for domestic micro-CHP (Combined Heat and Power) system. The double acting Stirling engine/generator has one displacer and two power piston which are supported by flexure springs. Two power pistons oscillate with symmetric sinusoidal displacement and are connected with moving magnet type linear generators for power generation. To operate Stirling engine/generator, combustion heat of natural gas is supplied to hot-end and heat is rejected from cold-end by cooling water. The temperature difference across the displacer induces the oscillating motion, and it can be explained with mass-spring vibration system. The purpose of this paper is to describe the design process of linear generator for the double acting free-piston Stirling engine.

An Estimation of Plant Specific Emission Factors for CO2 in Iron and Steel Industry (철강 산업의 산업공정부문 CO2 실측 배출계수 산정에 관한 연구)

  • Eom, Y.S.;Hong, J.H.;Kim, J.S.;Kim, D.G.;Lee, S.B.;Song, H.D.;Lee, S.H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.50-63
    • /
    • 2007
  • The development of domestic plant specific emission factors is very important to estimate reliable national emissions management. This study, for the reason, was carried out to obtain advances emission factor for Carbon Dioxide ($CO_2$) by source-specific emission tests from the iron and steel industry sector which is well known as one of the major sources of greenhouse gases ($CO_2$). Emission factors estimated in this study were compared with those of IPCC for evaluation and they were found to be of similar level in the case of $CO_2$. There was no good information available on $CO_2$ plant specific emission factors from the iron and steel industry in Korea so far. The major emission sources of $CO_2$ examined from the iron and steel manufacturing precesses were a hot blast stove, coke oven, sintering furnace, electric arc furnace, heating furnace, and so on. In this study, the concentration of $CO_2$ from the hot blast stove process was the highest among all processes. The $CO_2$ emission factors for a ton of Steel and Iron products (using B-C oil) were estimated to be 0.315 $CO_2$ tonne (by Tier 3 method) and 4.89 $CO_2$ tonne. In addition, emission factor of $CO_2$ for heating furnace process was the highest among all process. Emission factors estimated in this study were compared with those of IPCC for evaluation and they were found to be of similar level in the case of $CO_2$.

Feasibility study of a dedicated nuclear desalination system: Low-pressure Inherent heat sink Nuclear Desalination plant (LIND)

  • Kim, Ho Sik;NO, Hee Cheon;Jo, YuGwon;Wibisono, Andhika Feri;Park, Byung Ha;Choi, Jinyoung;Lee, Jeong Ik;Jeong, Yong Hoon;Cho, Nam Zin
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.293-305
    • /
    • 2015
  • In this paper, we suggest the conceptual design of a water-cooled reactor system for a low-pressure inherent heat sink nuclear desalination plant (LIND) that applies the safety-related design concepts of high temperature gas-cooled reactors to a water-cooled reactor for inherent and passive safety features. Through a scoping analysis, we found that the current LIND design satisfied several essential thermal-hydraulic and neutronic design requirements. In a thermal-hydraulic analysis using an analytical method based on the Wooton-Epstein correlation, we checked the possibility of safely removing decay heat through the steel containment even if all the active safety systems failed. In a neutronic analysis using the Monte Carlo N-particle transport code, we estimated a cycle length of approximately 6 years under 200 $MW_{th}$ and 4.5% enrichment. The very long cycle length and simple safety features minimize the burdens from the operation, maintenance, and spent-fuel management, with a positive impact on the economic feasibility. Finally, because a nuclear reactor should not be directly coupled to a desalination system to prevent the leakage of radioactive material into the desalinated water, three types of intermediate systems were studied: a steam producing system, a hot water system, and an organic Rankine cycle system.

Study for Fire Examples of LPG Leakage Including Fuel hose, Injector and Pressure Regulator Connector in Vehicle (자동차 연료호스, 인젝터 및 압력조절기 연결부에서 LP 가스 누출에 의한 화재사례 고찰)

  • Lee, Il Kwon;Kook, Chang Hoo;Suh, Moon Won;Jung, Dong Hwa
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.3
    • /
    • pp.8-13
    • /
    • 2013
  • The purpose of this paper is to study for fire example by fuel leakage in LPG Vehicle. At first example, the car was repaired the fuel line that was connected with pressure hose between fuel regulator and injector in engine. But the service man was not very tighten with regular torque. At a result, the gas leaked on hot parts of engine. It verified the production of fire by engine heat. At second example, when the repair man, after replacement the injector, inserted the injector in a assembling part of it, he didn't the transform condition of fixing part. Therefore, the tearing phenomenon of O ring producted the controlled leakage of fuel by the injector deflection. It found the fact that the fuel leaked with gap of O ring. At third example. the fuel-cut solenoid valve was lined with pressure regulator unit. But the service man didn't throughly certify the leaked work of connected parts after repaired it. As a result, it certified the fire by engine heating leaked liquefied petroleum gas. Therefore it have to minimize the fire production that the driver should do no problem to throughly manage the fuel system.

A System Simulation Model of Proton Exchange Membrane Fuel Cell for Residential Power Generation for Thermal Management Study (가정용 연료전지 시스템의 열관리 해석을 위한 시스템 운전 모델 개발)

  • Yu, Sang-Seok;Lee, Young-Duk;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • A PEMFC(proton exchange membrane fuel cell) is a good candidate for residential power generation to be coped with the shortage of fossil fuel and green house gas emission. The attractive benefit of the PEMFC is to produce electric power as well as hot water for home usage. The thermal management of PEMFC for RPG is to utilize the heat of PEMFC so that the PEMFC can be operated at its optimal efficiency. In this study, thermal management system of PEMFC stack is modeled to understand the dynamic response during load change. The thermal management system of PEMFC for RPGFC is composed of two cooling circuits, one for controling the fuel cell temperature and the other for heating up the water for home usage. The different operating strategy is applied for each cooling circuit considering the duty of those two circuits. Even though the capacity of PEMFC system (1kW) is enough to supply hot domestic water for residence, heat-up of reservior takes some hours. Therefore, in this study, time schedule of the simulation reflects the heat-up process. Dynamic responses and operating strategies of the PEMFC system are investigated during load changes.

Thermoacoustic Refrigerating System, Part II : Implementation and Experiment (열음향 냉장시스템 (II) : 제작 및 실험)

  • Hah, Zae-Gyoo;Ahn, Chul-Yong;Sung, Keong-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.13-20
    • /
    • 1995
  • In this paper, the thermoacoustic refrigerating system was implemented and its operation was experimentally verified. The system is composed of several parts ,4 inch midrange speaker, speaker housing, chamber, stack housing, stack of plates, heat exchangers, thin pipe and cavity. The system is filled with He gas at 10 bar and contains T-type thermocouples and condenser microphone for measuring the temperature and pressure inside, respectively. In addition, cooling water is used for protecting speaker from thermal destruction and cooling down the hot heat exchanger. For the experimental verification of the implemented refigerating system, electrical impedance and resonance characteristics were measured. The results showed that it was most efficient to drive the system at 340 Hz. When operated at 340 Hz, $30^\circ{C}$ environments and 50 electical watts, the temperature of the cold region decreased by $16^\circ{C}$. The dissatisfaction mainly comes from the incomplete thermal insulation of the cold region. We also pointed out some guidelines to improve the performance for later study.

  • PDF