• 제목/요약/키워드: Hot forging process

검색결과 222건 처리시간 0.023초

단조 금형의 윤활, 표면처리 및 금형 수명 평가 (Evaluation of Tool Life for Forging Die due to Lubricants and Suface Treatments)

  • 김병민
    • 소성∙가공
    • /
    • 제11권3호
    • /
    • pp.211-216
    • /
    • 2002
  • The mechanical and thermal load, and thermal softening occuring by the rush temperature of die, in warm and hot forging, cause wear, heat cracking and plastic deformation, etc. This paper describes the effects of solid lubricants and surface treatments for warm forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatments and lubricants are very important to hot and warm forging process. The main factors affecting die hardness and heat transfer, are surface treatments and lubricants, which are related to heat transfer coefficient, etc. To verify the effects, experiments are performed for heat transfer coefficient in various conditions - different initial billet temperatures and different loads. Carbonitriding and ionitriding are used as surface treatments, and oil-base and water-base graphite lubricants are used. The effects of lubricant and surface treatment for warm and hot forging die life are explained by their thermal characteristics, and the new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

변속기용 허브 부품 제조를 위한 열간 및 냉간 복합단조 공정 개발 (Development of Hot and Cold Forging Process for Manufacturing a Hub of Dual Clutch Transmission)

  • 조아라;정명식;이상곤;조용재;황선광
    • 소성∙가공
    • /
    • 제28권6호
    • /
    • pp.321-327
    • /
    • 2019
  • In this study, a hot and cold forging process was investigated to produce a complex-shaped hub of dual clutch transmission with low material loss and high productivity. The process was designed by the commercial finite element (FE) analysis program, DEFORM-2D (hot forging) and 3D (cold forging). And, the material flow and ductile fracture characteristics were studied to check the surface crack initiation of the specimen. The simulation results indicated that the proposed process could manufacture the complex-shaped hub with no surface crack and high-efficiency compared to the conventional machining process. For verification the numerical results, the hub of the SCM440 was fabricated by the proposed process and the mechanical properties and microstructure evolution were studied. It was demonstrated that the suggested hot and cold forging process might be useful in producing the key components of the automobile industry as a high-efficiency and environmentally friendly process.

6 시그마 기법과 컴퓨터 시뮬레이션 기술을 이용한 금속 유동선도를 고려한 열간 단조공정의 최적화 (Optimization of Hot Forging Process Using Six Sigma Scheme and Computer Simulation Technology Considering Required Metal Flow Lines)

  • 문호근;문석찬;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.199-202
    • /
    • 2005
  • In this paper, the six sigma scheme is employed together with the rigid-viscoplastic finite element method to obtain the optimal metal flow lines in hot press forging. In general, the six sigma process is consisted of following five steps : define, measure, analyze, improve and control. Each step Is investigated in detail to meet customer's requirements through improvement of product quality. A forging simulator, AFDEX-2D, is used for analysis of the metal flow lines of a multi-stage hot forging process under various conditions of major factors, determined at each step of the six sigma process. The analyzed results are examined in order to reveal the effects of major factors on the metal flow lines and the formed shapes. The effects are used to find an optimal process and the optimal process with die is devised and tested. The comparison between required metal flow lines and experiments shows that the approach is effective for optimal process in hot forging design considering metal flow lines.

  • PDF

비대칭 레일강으로부터 대칭 레일강으로의 열간단조 공정설계 (Process Design for Hot Forging of Asymmetric to Symmetric Rail Steel)

  • 조해용;이기정;오병기;이학규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.666-669
    • /
    • 2002
  • Process design of hot forging, asymmetric to symmetric rail, which is used for the turnout of railway express has been investigated. Owing to the big difference in shape between the initial billet and the final forged product, it is impossible to hot forge the rail in a single step. Therefore, multi step forging as well as die design for each step are necessary for the production. The deformation behavior during hot forging has been analyzed by the numerical simulation through commercial FEA software, DEFORM$^{TM}$-2D. Modification of the design and repeated simulation have been carried out on the basis of the simulation result. For comparison with the simulation results, flow analysis experiment using plasticize has been also carried out. The results of the flow analysis experiment showed good agreement with those of the simulation. Therefore, the developed process design could be applied to the actual production.

  • PDF

피스톤크라운의 열간단조공정 최적화를 위한 유한요소해석 (FEM Analysis for Optimization of Hot Forging Process of Piston Crown)

  • 민규영;임성주;최호준;최석우;박용복
    • 소성∙가공
    • /
    • 제18권6호
    • /
    • pp.444-447
    • /
    • 2009
  • Piston crown to the hot forge a unified nature of the product has a shape with multi-level step forging process, so if you are not a mechanical professional, this process could lead to a significant loss to the material. Therefore, material technology in minor terms; continue to improve the collection rate that undamaged the product material. The piston crown and the manufacturing products such as marine diesel engines are being forged to reduce costs and to improve mechanical properties. Piston crown molding is a hot forging process that works in large volume forging products. Because of the size of the hard plastic material flow process for improving the design and actual field experience through advanced plastic technology, it is important to interpret the results. Also for many experimental plastic procedures, the accumulation of results is very important.

피스톤크라운의 열간단조공정 최적화를 위한 유한요소해석 (FEM Analysis for Optimization of Hot Forging Process of Piston Crown)

  • 민규영;임성주;최호준;최석우;박용복
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.98-101
    • /
    • 2009
  • Piston crown to the hot forge a unified nature of the product has a shape with multi-level step forging process, so if you are not a mechanical process that can be a significant loss is material. Therefore, minor in terms of material technology; continue to improve the collection rate should be. The Piston crown and the manufacturing of products such as marine diesel engines, reducing costs and to improve mechanical properties of the method are being forged. Piston crown molding hot forging process the large volume forging products handling because of the size of the size of the hard plastic material flow process for improving the design and actual field experience through advanced plastic technology, and it is important to interpret the results and for many experimental plastic The accumulation of results is very important.

  • PDF

일체형 중공 드라이브 샤프트 제작을 위한 점진적 열간 로터리 단조 공정 조건 예측 (Estimation of Conditions of Incremental Hot Rotary Forging Process for Monobloc Tubular Drive Shaft)

  • 이호진;국대선;안동규;정종훈;설상석
    • 한국정밀공학회지
    • /
    • 제33권4호
    • /
    • pp.287-293
    • /
    • 2016
  • A monobloc tubular drive shaft is designed to obtain the improved structural safety and the weight reduction of the drive shaft together. The monobloc tubular drive shaft can be manufactured from an incremental hot rotary forging process. The aim of this study was to experimentally determine conditions of an incremental hot rotary forging process for a monobloc tubular drive shaft. Induction heating experiments were performed to estimate a proper heating time of an initial workpiece in an induction heating process. Several incremental hot rotary forging experiments were carried out using a mechanical press with the designed set-up. The step distance and the step angle were chosen as controllable forming parameters. Based on the results of the experiments, the influence of forming parameters on the quality of the forged part was investigated. Finally, a forming map and a proper forming condition of the incremental hot rotary forging process were estimated.

마멸에 기초한 비대칭 열간단조 금형수명 예측에 관한 유한요소 시뮬레이션 (Finite Element Simulation on Prediction of an Asymmetric Hot Forging Die Life Based on Wear)

  • 최창혁;정경빈;김용조
    • 한국기계가공학회지
    • /
    • 제12권4호
    • /
    • pp.47-54
    • /
    • 2013
  • The main cause of die failure in hot forging is wear. Die wear directly generates the gradual loss of part tolerances, thereby causing deterioration in the dimensional accuracy of a forged part. It is very important to estimate forging cycles, called as die life, at which the die should be repaired or replaced. In this study, in order to estimate the hot forging die life, the finite element simulation of wear on an asymmetric part like a ball joint socket used in vehicle was carried out based on Archard's model. Finite element simulation results were compared with wear amounts of a used die that were measured using a contact stylus profilometer. The simulation results were in relatively good agreement with measurements obtained from the virtual die which was used by 7,000 forging cycles in a forging industry. Consequently, the die life in the hot forging of the ball joint socket was estimated by 10,500 forging cycles on the finisher die.

냉열간 단조기술을 적용한 농기계용 클러치 Jaw 부품 일체화 성형기술 (Integration Forming Technology based on Cold Hot Forging of Clutch Jaw Parts for Farm Machinery)

  • 박동환;한성철
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.489-495
    • /
    • 2015
  • Forging is a manufacturing process involving the shaping of metal using localized compressive forces and the process of deforming metal into a predetermined shape using certain tools and press according to the temperature. Forging provides stronger metal parts than that possible by casting or machining. Conventional clutch jaw parts have been developed through cold forging and precision machining; however, fabrication of integral clutch jaw parts for farm machinery has not been reported yet. These parts were developed by applying a complex forging technology combining cold and hot forging. The integrated forming technology proposed in this study will be useful for reducing the lead-time for manufacturing, improving the accuracy of products, and eliminating the welding process.

자동차 자동변속기 기어용 합금강의 열간 단조 성형에 따른 기계적 특성 변화에 관한 연구 (Effect of Changes in Metal Characteristics of Hot-Forged Alloy Steel on Mechanical Properties of an Automotive Automatic Transmission Gear)

  • 김화정;김용조;김현수
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.135-146
    • /
    • 2016
  • This study investigated the effect of the changes in metal characteristics due to the hot forging on SCR420HB applied to ensure the optimal production of the hot-forging ratio on the mechanical properties of an automotive automatic transmission gear. The microstructural changes in the forging ratio were investigated by adjusting the forging range into multiple ranges from alloy steel. This was done in order to set the optimum forging range given the manufacturing process conditions during the hot forging of alloy steel parts with a carbon content of more than 0.8% wt. The effects of the content change in the microstructure on the mechanical properties due to the use of the part were examined.