• Title/Summary/Keyword: Hot forging process

Search Result 222, Processing Time 0.024 seconds

Grain Size Effect on Formability of Mg alloys (Mg 합금의 성형성에 미치는 결정립 크기의 영향)

  • Kim, T.O.;Kwon, Y.N.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.448-451
    • /
    • 2008
  • Magnesium alloys still have a lot of technical challenges to be solved for more applications. There have been many research activities to enhance formability of magnesium alloys. One is to design new alloy composition having better formability. Also, low formability of wrought alloys can be improved by optimizing the processing variables. In the present study, effect of process variables such as forging temperature and forging speed were investigated to forgeability of three different magnesium alloys such as AZ31, AZ61 and ZK60. To understand the effect of process variables more specifically, both numerical and experimental works have been carried out on the model which contains both upsetting and extrusion geometries. Forgeability of magnesium alloys was found to depend more on the forging speed rather than temperature. Forged sample showed a significant activity of twinning, which was found to be closely related with flow uniformity.

  • PDF

Experiment of Turbine Blade Forging Process using Model Material and SLA Prototype Die Set (SLA 시금형을 이용한 터빈블레이드 단조공정의 모델 실험)

  • Park, K.;Shin, M.C.;Yang, D.Y.;Cho, C.R.;Kim, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.71-77
    • /
    • 1995
  • In this paper, an experimental study of hot forging process is carried out using plasticine. In order to manufacture the die set, Stere olithography Apparatus(SLA) which is most widely used rapid prototyping system is introduced. Turbine blade forging is executed using plasticine and the SLA prototype die set. Through the experiment ,it turned out that SLA prototype is suitable to the die set for the plasticine workpiece, and theformability and forming load of turbine blade forging are predicted.

  • PDF

Properties of TiBN Films produced by PECVD (PECVD에 의해 생성된 TIBN 박막의 특성)

  • Huh, J.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.3
    • /
    • pp.136-141
    • /
    • 2002
  • During warm and hot forging process of steels or aluminum alloys, dies are subject to early fracture, severe wear by thermo-mechanical stress. Especially, during the die-casting of aluminum alloys, the service life of dies is incredibly lowered. In this study we investigated the characteristics of TiBN films produced by PECVD. TiBN films showed very high hardness, excellent wear resistance, which could enhance the service life of die parts such as forging punch, die casting core pin successfully.

Manufacturing of Product by Semi-Solid Forging (반용융 단조품의 제조)

  • Park, Hyung-Jin;Kang, Chung-Gil;Kim, Byung-Min;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.45-51
    • /
    • 1999
  • The semi-solid forging is a new forging technology in which the billet is heated to the semi-solid state coexisting liquid and solid phase for making globular microstructure and subsequently formed. As the semi-solid forging is compared with conventional casting such as die casting and squeeze casting for the characteristics of its process, the product without inner defects such as gas porosity and segregation can be obtained and its microstructure is globular grain. Simutaneously, its mechanical properties are improved by globular microstructure and the lower temperature of the slug causes the cycle time of manufacturing to be shortened and the die life to be lengthened. As it is compared with conventional cold and hot forging, it is possible to minimize the equipment of production owing to a lower forming load and reduce the number of process by a followed treatment for complex shaped product. Therefore it is needed to confirm the quality of a semi-solid forged product by defining its characteristics quantitatively under these advantages. This paper investigates the formability of a master cylinder by its forming variables. And the microstructural characteristics and mechanical property of it is also studied.

  • PDF

A study on the Microstructural Changes with Modification and Cast-forging in Hypoeutectic Al-Si Alloys (아공정 Al-Si 합금의 개량처리와 주단조에 의한 조직변화에 관한 연구)

  • Yoon, Ji-Hyun;Seol, Eun-Cheol;Kim, Eok-Soo;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.22 no.1
    • /
    • pp.26-34
    • /
    • 2002
  • For application of cast-forging process with Al-Si alloys, casting experiments are carried out by adding Sr and TiB to Al-Si alloys for grain refinement treatment. We experimented on the mechanical properties according to microstructural changes, forging ability test and also investigated the mechanical properties after forging. The finest microstructure could be observed respectively when 0.05 wt.%Sr and 0.1 wt.%TiB were added. In this case, tensile strength and elongation increased much more than as casting. After high temperature deformation simulation test with grain refinement specimens was carried out, about 60N per unit $area(mm^2)$ of specimen was confirmed. After hot forging, tensile strength and elongation were increased. It was considered that casting defect was removed by compressive working.

A Study on the Development of Aluminum Piston by Forging Process (알루미늄 단조 피스톤의 개발에 관한 연구)

  • Kim, Y.H.;Bae, W.B.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.30-36
    • /
    • 1997
  • In this study, the development of an aluminum forged piston was tried to substitute the cast piston, in which there were internal defects such as blow hole and shrink pipe. A gasoline engine piston was chosen as an example for developing the forged piston. Before aluminum forging, model, material (plasticine) test was carried out to investigate the forgeability and internal flow pattern of the forged piston at room temperature. From the result of model material test, an aluminum piston to be forged was redesigned. The aluminum pistion was forged in hot process. The quality of a forged piston was compared with that of a cast piston in the point of mechanical properties, internal defect and microstructure. It was proved that the forged piston was superior to the cast piston.

  • PDF

Development of Alloy 718 Nozzle for Jet Propulsion Component (고속 추진체용 Alloy 718 노즐 단조품 개발)

  • Kim, Jeoung-Han;Kim, Nam-Yong;Yeom, Jong-Taek;Hong, Jae-Keun;Park, Nho-Kwang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.39-42
    • /
    • 2008
  • Alloy 718 nozzle component was manufactured by hot working and electron beam welding process. In this process, domestic 718 materials were applied and evaluated. Hot compression tests were carried out at a lot of process conditions and microstructural evaluation was investigated. Using the results, FEM simulations were performed in order to optimize the hot working process. After hot working, forged work-pieces were machined and welded by electron beam. Final nozzle component were heat treated and their microstructure and mechanical properties were investigated.

  • PDF

The Forging Analysis of S/CAM Shaft to the Drum Brake (드럼브레이크 S/CAM 샤프트 단조 해석)

  • Kim, Mi-Ae;Sung, Back-Sub;Cha, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1113-1118
    • /
    • 2008
  • In the hot forging process, The forging defects that are caused by metal were strain, temperate, and inclusion. In this paper, the computer simulation analyzed the effective plastic strain and temperature behaviors. The quantitative analyses which proposed the effective mold design of S/CAM shaft was executed. The parameters of forging shape that affected on the optimize conditions that was calculated with simple equation were investigated. it is expected that the developed analysis model and design technique would greatly contribute to the drum brake optimal design considering temperature affected and material behaviors. This development could save more than 20% of production cost and reduced failure rate to more than 30%. By improving the life span of mold from 15,000 to 25,000, financial difficulty of company imposed on a mold manufacture could be overcome.

  • PDF

Preform Design Technique by Tracing The Material Deformation Behavior (재료의 변형거동 추적을 통한 예비형상 설계)

  • Hong J. T.;Park C. H.;Lee S. R.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.91-94
    • /
    • 2004
  • Preform design techniques have been investigated in efforts to reduce die wear and forming load and to improve material flow, filing ratio, etc. In hot forging processes, a thin deformed part of a workpiece, known as a flash, is formed in the narrow gap between the upper and lower tools. Although designers make tools that generate a flash intentionally in order to improve flow properties, excessive flash increases die wear and forming load. Therefore, it is necessary to make a preform shape that can reduce the excessive flash without changing flow properties. In this paper, a new preform design technique is proposed to reduce the excessive flash in a metal forging process. After a finite element simulation of the process is carried out with an initial billet, the flow of material in the flash region is traced from the final shape to the initial billet. The region belonging to the flash is then easily found in the initial billet. The finite element simulation is then carried out again with the modified billet from which the selected region has been removed. In several iterations of this technique, the optimal preform shape that minimizes the amount of flash without changing the forgeability can be obtained.

  • PDF

Preform Design Technique by Tracing the Material Deformation Behavior (재료의 변형거동 추적을 통한 예비형상 설계)

  • Hong J. T.;Park C. H.;Lee S. R.;Yang D. Y.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.503-508
    • /
    • 2004
  • Preform design techniques have been investigated to reduce die wear and forming load and to improve material flow, filling ratio, etc. In hot forging processes, a thin deformed part of a workpiece, known as a flash, is formed in the narrow gap between the upper and lower tools. Although designers make tools that generate a flash intentionally in order to improve flow properties, excessive flash increases die wear and forming load. Therefore, it is necessary to make a preform shape that can reduce the excessive flash without changing flow properties. In this paper, a new preform design technique is proposed to reduce the excessive flash in a metal forging process. After a finite element simulation of the process is carried out with an initial billet, the flow of material in the flash region is traced from the final shape to the initial billet. The region belonging to the flash is then easily found in the initial billet. The finite element simulation is then carried out again with the modified billet from which the selected region has been removed. In several iterations of this technique, the optimal preform shape that minimizes the amount of flash without changing the forgeability can be obtained.