• Title/Summary/Keyword: Hot flame

Search Result 142, Processing Time 0.025 seconds

Combustion Enhancemen of Premixed Mixtures Using Laser-Induced Cavity Ignition (레이저 유도 공동 점화방식을 이용한 예혼합기 연소 특성 향상)

  • 모하메드하산;고영성;정석호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.8-16
    • /
    • 1999
  • In this study, a new type of laser-induced ignition using a conical cavity has been developed to utilize all the available incident laser energy. In the method, it is possibile to ignite combustible methane/air mixtures by directing a laser beam of a constant small diameter into a small conical cavity, without focusing the laser beam. Shadow graphs for the early stage of combustion process show that a hot gas jet is ejected from the cavity, especially with lean mixture. After a very show time, the hot gas jet finishes issuing and the flame behavior is quite similar to flame propagation initiated by a conventional spark ignition. The combustion process using the new method exhibits more rapid pressure increase and a higher maximum pressure rise than that of the center ignition using laser-induced spark, with significant decrease in the combustion time. Also, the new ignition method is numerically modeled to simulate the flame kernel development and subsequent combustion process using the KIVA-IIcode. The calculated results show satisfactory agreement with experimental results.

  • PDF

Combustion Characteristics of Methane/Oxygen in Pre-Mixed Swirl Flame (메탄/순산소 예혼합 화염의 선회특성)

  • Kim, Han-Seok;Choi, Won-Seok;Cho, Ju-Hyeong;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.343-348
    • /
    • 2009
  • The present study has experimentally investigated the effects of $CO_2$ diluted oxygen on the structure of swirl-stabilized flame in a lab-scale combustor. The methane fuel and oxidant mixture gas ($CO_2$ and $O_2$) were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame characteristics were examined for various amount of carbon dioxide addition to the methane fuel and various swirl strengths. The effects of carbon dioxide addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using chemiluminescence techniques to provide information about flow field. The results show that the hot combustion zone increases at the upstream reaction zone because of an increase in the recirculation flow for an increase in swirl intensity. The hot combustion zone is also increased at the downstream zone by recirculation flow because of an increase in swirl intensity which results in higher centrifugal force. The OH and CH radical intensities of reaction zone decrease with carbon dioxide addition because the carbon dioxide plays a role of diluted gas in the reaction zone.

The change of deflagration to detonation transition by wall cooling effect in ethylene-air mixture (에틸렌-공기 혼합물에서 벽면 온도 감소에 의한 연소폭발천이 현상 변화)

  • Gwak, Min-Cheol;Kim, ki-Hong;Yo, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.457-462
    • /
    • 2011
  • This paper presents a numerical investigation of deflagration to detonation transition (DDT) induced by shock wave and flame interaction in ethylene-air mixtures. Also shows the change of DDT triggering time by wall cooling effect. A model is consisted of the compressible reactive Navier-Stokes equations. And the effect of viscosity, thermal conduction, molecular diffusion, chemical reaction and wall effect are included. Using this model, the generation of hot spot by repeated shock and flame interaction, occurrence of detonation, and wall cooling effect of detonation confining boundaries are studied.

  • PDF

Flow Direction Characteristics in the Vicinity of the Spark Plug in an S. I. Engine

  • Han, Sung-Bin;Chang, Yong-Hoon;Chung, Yon-Jong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.891-899
    • /
    • 2000
  • The flame speed may be decomposed into the burning speed and the flame transport speed. The flame transport speed is affected considerably by the flow direction, variation rate of flow direction, and flow speed in the combustion chamber. Especially, the flow direction and the variation rate of flow direction at the spark plug location during the ignition period have an important effect on the ignition process and the early flame propagation process. We measured the flow direction component and the variation rate of flow direction with a hot wire probe at the spark plug location. It was shown that the representative flow direction of ignition period is the right-vertical direction of crank shaft and it was used to investigate the variation rate of flow direction.

  • PDF

Combustion Characteristics of Methane-Air Mixture in a Constant Volume Combustion Chamber(1): Homogeneous Charge (정적연소기에서의 메탄-공기 혼합기의 연소특성(1) : 균질급기)

  • 최승환;전충환;장연준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.48-57
    • /
    • 2003
  • A cylindrical constant volume combustion chamber was used to investigate the flow characteristics at spark plug and the combustion characteristics of homogeneous charge methane-air mixture under various initial pressure, excess air ratio and ignition times in quiescent mixture. The flow characteristics such as mean velocity and turbulence intensity was analyzed by hot wire anemometer. Combustion pressure development measured by piezoelectric pressure transducer and flame propagation acquired by ICCD camera were used to investigate the effect of initial pressure, excess air ratio and ignition times on pressure, combustion duration, flame speed and burning velocity. Mean velocity and turbulence intensity had the maximum value at 200 or 300ms and then decreased to near 0 value gradually after 3 seconds. Combustion duration, flame speed and burning velocity were observed to be promoted with excess air ratio of 1.1, lower initial pressure and ignition time of 300ms.

The Influence of Turbulent Intensity and Ignition Energy Affected on Early Combustion Process (초기연소과정에 미치는 난류강도 및 점화에너지의 영향)

  • Kim, M.H.;Kim, Y.H.;Lee, J.T.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.274-284
    • /
    • 1995
  • The effect of turbulence and ignition energy on flame kernel growth in mathanol-air mixtures has been studied in a constant volume vessel. Experiments were made under different turbulent intensity conditions, ignition energy and over a range of equivalence ratio. Characteristics of turbulent flow were grasped by measurments of gas pressure and visualization of flame propagation. Flow velocity was measured by use of hot wire anemometer. A comparison of the effect of turbulence on ignition probability and flame kernel volume variation ratio is also presented.

  • PDF

Emissions in lean-lean two-stage combustion using premixed tubular flames

  • Takagi, Hideyuki;Hayashi, Shigeru;Yamada, Hideshi;Kawakami, Tadashige
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.466-471
    • /
    • 2004
  • In gas turbines, excess air for combustion is available and therefore lean premixed combustion is the most promising approach to the significant reduction of thermal NOx emissions. At lean conditions, however, flame stability is inherently worse and hence combustion tends to be incomplete. Efforts have been devoted toward extending the operating range of complete combustion at leaner conditions. One of them is the lean-lean two-stage combustion where lean to ultra-lean secondary mixtures are mixed with the hot burned gas from the primary stage. Conventional flame combustion or flameless reaction are initiated depending on the conditions of the secondary zone. In the first part of the present study, the effects of fuel injection on the emissions and flame stability were investigated for a single tubular flame, In the second part, the emissions and flame stability were studied for a two-stage combustor with secondary mixture injected through the tangential slots on a cylindrical combustor wall. The effects of the ratio of air flow rates to the primary and secondary zones on the emissions and combustion characteristics were investigate.

  • PDF

A numerical model for combustion process of single coal particle in hot gas (고온 유동장 내 석탄 단입자 연소과정의 특성화를 위한 수치적 연구)

  • Niu, Xiaoyang;Lee, Hookyung;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.301-304
    • /
    • 2015
  • With the experiment observation of single particle combustion, this model is built for the numerical analysis of the process. It's about the single coal particle combustion process under different conditions with reasonable assumptions. The model can express the mass, radius, density, temperature changing with different particle sizes, oxygen concentration and gas temperature. It also includes the flame sizes change in different condition and the diffusion of each species. The result shows the characters of the combustion.

  • PDF

A Study on the Flame Stability of Porous Ceramic Burner (다공성세라믹버너의 화염안정화에 관한 연구)

  • Lee, Do-Hyung;Yun, Bong-Seok
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.12-18
    • /
    • 2016
  • Typical boiler system consists of combustion chamber and heat exchanger in one housing, therefore the size of boiler system is large and the heat exchanging efficiency becomes low. At these boiler systems, because the combustible mixture fires as free flame in the combustion chamber, consequently the combusted hot gas heats the heat exchanger only as conductive and convective heat transfer. The present Porous Ceramic Burner concept is that combustion process is occurred at the gaps of the porous ceramic materials, and the heat exchanger is placed in the same porous materials. Therefore we can reduce the boiler size, and we can also use radiative heat transfer from ceramic material with conductive and convective heat transfer from combusted gas throwing the porous materials. The purpose of this study is to search the flame stability ranges at different fuel flow rate and excess air ratio burning in the $Al_2O_3$ ceramic balls. We found out the stable excess air ratio range on given combustion intensity. And we can get clean porous ceramic combustion results compared with free flame.

Development of Low NOx Gas Burner Absorption Chiller/Heater Unit (흡수식 냉온수기용 저 NOx 가스버너 개발)

  • 최정환;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.277-283
    • /
    • 1995
  • For the development of low NO$_{x}$ gas burners aimed for absorption chiller/heater unit, three proto type burners of different capacity (265000, 498000, and 664000 kcal/h) have been manufactured through a combustion method of step-by-step air injection. In order to characterize the overall features of the flame and the properties of the emission gas, the temperature of the flame and the concentration of NO$_{x}$ and CO were determined. The main factors in the design of burners (the area of primary air injection, the diameter of secondary air injection hole, fuel nozzle diameter) were observed to increase linearly with the scale-up of burner capacity. The flame temperature profiles of the burners were observed to be almost similar, irrespective of their capacity. However, as their capacity increased, the flame temperature slightly increased and the hot region of the flames moved to ward the flame tip along with the expansion to the direction of radius. From the proto type units, the amount of their NO$_{x}$ emission was determined to be around 25 - 30 vppm(3% )$_{2}$) and the CO emission was less than 19 vppm (3% $O_{2}$).TEX>).