• 제목/요약/키워드: Hot cell

검색결과 906건 처리시간 0.031초

조사후시험시설에서의 핫셀 배기포집시스템의 성능평가 (Performance of the Exhaust Filtration System of Hot Cell at PIEF)

  • 황용화
    • 설비공학논문집
    • /
    • 제23권12호
    • /
    • pp.799-804
    • /
    • 2011
  • Radioactivity of high concentrations have existed in the handling nuclear materials in hot cell of PIEF(Post Irradiation Examination Facility). The exhaust filtration system was enabled to process cylindrical filters by using a manipulator in the hot cell. By establishing a double filtration system with two filters, backup protection against leakage or failure of the first is provided by the second filter. Additionally, this a arrangement is arrange intended to increase the total filtration efficiency. The result of the pressure drop changing in the air flow of the cylindrical and HEPA filters is observed by a curved line. A filtering efficiency of more than 99.99% to $0.3{\mu}m$ particle appears in the upstream and downstream during the efficiency test on the HEPA filters. The V-pleats type had a lower pressure drop than the separator type. There was no damage during usage and was found to be suitable with high capacity of air volume. Therefore, by carrying out performance tests of the exhaust filtration system, efficiency and safety can be achieved.

고분자 전해질 연료전지 성능에 미치는 MEA 가압제조 공정 조건의 영향 (Performance of Fuel Cell with PEMFC Fabricated under Different Pressure)

  • 이기성;심수만;김동민
    • 한국수소및신에너지학회논문집
    • /
    • 제24권1호
    • /
    • pp.70-75
    • /
    • 2013
  • It has fabricated membrane electrode assemblies (MEA) for proton exchange membrane fuel cell by hot-pressing method. The hot-pressing was used for the fabrication of MEA which is composed of commercial platinum electrode on carbon paper. The performance of MEA was studied with different fabrication conditions of temperature, pressure and torque. As the temperature increased, the performance of MEA was increased. and started to decrease l after arrived at the maximum performance of MEA. This is related with good contact between electrode and polymer electrolyte membrane at high temperature and microstructural change at much higher temperature. Similarly, as the pressure increased, the performance of the MEA increased up to highest values and start to decrease. According to the our results, the maximal performance of the MEA was at the temperature of $140^{\circ}C$ and the pressure of $1.5{\times}10^3$ kPa. The optimal torque to assemble the single stack was 3.2 N m.

고분자전해질형 연료전지에서 Nafion막 에칭의 영향 (Effect of Nafion Membrane Etching for Proton Exchange Membrane Fuel Cell)

  • 박권필;조규진;이건직;전해수
    • 전기화학회지
    • /
    • 제2권4호
    • /
    • pp.190-194
    • /
    • 1999
  • 고분자전해질형 연료전지에서 에칭한 Nafion막으로 고분자막/전극 어셈블리를 제조하고 그 성능을 측정하였다. 에칭을 함으로서 고분자막과 전극의 접합이 잘 이루어져 hot pressing 압력과 온도를 낮출 수 있었고, 낮은 온도에서 hot pressing이 이루어짐으로서 전지의 성능을 향상시킬 수 있었다. 어셈블리 제조방법중의 하나인 페인팅 방법에서 에칭 된 Nafion막을 이용하면 전지의 성능이 향상됨을 보였으며, 에칭정도에 따라 적당한 양의 전극촉매를 사용해야 함을 보였다.

태양전지 모듈의 바이패스 다이오드 동작 특성 분석 (The Analysis on Operation Characteristics of Bypass Diode in PV Module)

  • 김승태;강기환;박지홍;안형근;한득영;유권종
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.25-26
    • /
    • 2007
  • In this paper, we studied the shadow effect which is one of environmental cause for hot-spot phenomenon on PV by considering electrical effects. We fabricated PV module in case of existence and nonexistence of bypass diode. And maximum output power and thermal distribution was analyzed by shadowing solar cell by increase of 5%. From the results, the PV module's(without bypass diode) maximum output power was reduced by hot-spot gradually. But the PV module's(with bypass diode) maximum output power had no reduction by operation of bypass diode, though solar cell is shadowed more than 60%. The solar cell temperature of PV module(without bypass diode) was $10^{\circ}C$ higher compared to module's one. This is a reason for shortening of durability of PV module.

  • PDF

2 kW급 고체산화물연료전지의 고온배기가스 폐열회수를 위한 일체형 Hot BoP의 설계 및 성능 평가 (Design and Performance Evaluation of Integral-type Hot BoP for Recovering High-temperature Exhaust Gas in 2 kW Class SOFC)

  • 김영배;김은주;윤종혁;송형운
    • 공업화학
    • /
    • 제30권1호
    • /
    • pp.62-67
    • /
    • 2019
  • 본 연구에서는 2 kW급 SOFC (solid oxide fuel cell)에서 배출되는 고온 배기가스의 폐열회수를 위한 일체형 Hot BoP의 설계와 성능 분석에 대한 연구를 수행하였다. Hot BoP 시스템은 스택 배기가스의 연소를 위한 촉매 연소기와 연소 후 배기가스의 폐열회수를 위한 원통다관형 공기예열기 및 스팀발생기로 구성되었다. 시스템 설계에서 폐열회수 시스템의 배치에 따른 최대 허용열용량을 산출하여 열분배 공정을 분석하였으며, 열전달 방정식을 통하여 공기예열기 및 스팀발생기의 상세설계를 수행하였다. Hot BoP는 방열손실의 저감을 위해 일체형으로 제작되었으며, SOFC와 연계운전을 가정한 스택배기가스를 모사하여 성능실험에 사용하였다. Hot BoP 성능실험에서 부하별 열전달량 및 시스템 효율이 측정 및 분석되었으며, 당량비에 따른 배기가스의 CO 발생량을 측정하여 연소성을 분석하였다. 실험결과로써, 2 kW급 SOFC 정격운전시 배기가스 연소열부하 기준으로 hot BoP의 열적 효율은 약 60%이며, 연소 후 배기가스의 CO 발생량은 당량비 0.25 이상에서 급격히 감소되는 것으로 나타났다.

Photoactive Layer Formation with Oven Annealing for a Carbon Electrode Perovskite Solar Cell

  • Kim, Kwangbae;Song, Ohsung
    • 한국재료학회지
    • /
    • 제30권11호
    • /
    • pp.595-600
    • /
    • 2020
  • The photovoltaic properties of perovskite solar cells (PSCs) with a carbon electrode fabricated using different annealing processes are investigated. Perovskite formation (50 ℃, 60 min) using a hot-plate and an oven is carried out on cells with a glass/fluorine doped TiO2/TiO2/ZrO2/carbon structure, and the photovoltaic properties of the PSCs are analyzed using a solar simulator. The microstructures of the PSCs are characterized using an optical microscope, a field emission scanning electron microscope, and an electron probe micro-analyzer (EPMA). Photovoltaic analysis shows that the energy conversion efficiency of the samples fabricated using the hot-plate and the oven processes are 2.08% and 6.90%, respectively. Based on the microstructure of the samples and the results of the EPMA, perovskite is formed locally on the carbon electrode surface as the γ-butyrolactone (GBL) solvent evaporates and moves to the top of the carbon electrode due to heat from the bottom of the sample during the hot plate process. When the oven process is used, perovskite forms evenly inside the carbon electrode, as the GBL solvent evaporates extremely slowly because heat is supplied from all directions. The importance of the even formation of perovskite inside the carbon electrode is emphasized, and the feasibility of oven annealing is confirmed for PSCs with carbon electrodes.

Evaluation of the Antioxidant and Antiproliferative Properties of a Hot-water Extract from Gulfweed, Sargassum fulvellum

  • Kim, So Jung;Kang, Mingyeong;Lee, Taek-Kyun
    • 한국해양바이오학회지
    • /
    • 제10권2호
    • /
    • pp.53-61
    • /
    • 2018
  • Sargassum fulvellum (gulfweed) is a widespread seaweed in the coastal areas of northeast Asia. In the present study, we identified the phenolic compounds present in aqueous and ethanolic extracts of S. fulvellum and evaluated their antioxidative properties and their abilities to block cell proliferation using in vitro assays: antioxidant activity was assessed by using a DPPH assay and superoxide anion scavenging activity, anti-tyrosinase activity, and anti-proliferative activity were assessed using MTT and lactate dehydrogenase [LDH] assays in vascular smooth muscle cells. The hot-water ($65^{\circ}C$) extract had a higher phenol content than the ethanolic extract. The hot-water extract showed a statistically significant increase in free radical scavenging activity and a greater ability to reduce proliferation of vascular smooth muscle cells stimulated with platelet-derived growth factor-BB. Taken together, hot-water extracts of S. fulvellum may be an important source of antioxidative and antiproliferative agents.

GaAs Thin Films Grown on Conducting Glass by Hot Wall Epitaxy for Solar Cell

  • Tu, Jielei;Chen, Tingjin;Zhang, Chenjing;Shi, Zhaoshun;Wu, Changshu
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제6권2호
    • /
    • pp.71-75
    • /
    • 2002
  • GaAs polycrystalline thin films with good performance were prepared on conducting glass by hot wall epitaxy (HWE), which were used for solar cell. Electron probe micro-analyzer (EPMA) was applied for the composition, morphology of surface and cross-section of grown films, and X-ray diffraction (XRD) for their phase structure; Raman scattering spectum (RSS) and photoluminescence (PL) were used for evaluating their optical characteristics. The results show that, there is textured structure on the surface of grown GaAs polycrystalline films, which is greatly promised to be suitable for the candidate of solar cell with low cost and high efficiency. It is concluded that the source and substrate at temperature of 900 ~ 930 $\^{C}$ and 500 $\^{C}$ respectively would be beneficial for such films.

  • PDF

Direct writing 기법을 이용한 유기태양전지용 격벽 stamper 금형 제작 및 성형에 관한 연구 (Study on the stamper mold manufacture and molding of barrier ribs for polymer solar cells using direct writing method)

  • 황철진;김종선;홍석관;오정길;강정진
    • Design & Manufacturing
    • /
    • 제2권6호
    • /
    • pp.28-32
    • /
    • 2008
  • Polymer solar cells are a type of organic solar cell (also called plastic solar cell), or organic photovoltaic cell that produce electricity from sunlight using polymers. It is a relatively novel technology, they are being researched by universities, national laboratories and several companies around the world. In this paper, stamping mold of barrier ribs for polymer solar cells was manufactured by lithography and electroforming which can control the height of pattern and 80nl of barrier ribs was manufactured by using hot embossing.

  • PDF

기계적 스트레스에 의한 태양전지모듈의 전기적 특성변화 (The Variation of Electrical Characteristics of PV Module due to Mechanical Stress)

  • 공지현;지양근;강기환;김경수;유권종;안형근;한득영
    • 신재생에너지
    • /
    • 제6권1호
    • /
    • pp.38-45
    • /
    • 2010
  • Abstract Under the physical stress on photovoltaic (PV) module, it will be warped according to elongation of the front glass and then micro-crack will be occurred in the thermally sealed solar cell. This micro-crack leads to drop of short circuit current of the PV module. This is because of increase of resistance component by micro-crack. Micro-crack at specific solar cell in the module lessens the durability of PV module with reduced output, hot-spot caused by solar cell output mismatch and increased resistance component. This study shows the relation between electrical characteristics and micro- cracks due to mechanical stress on PV module.