• Title/Summary/Keyword: Hot and Humid Climate

Search Result 40, Processing Time 0.023 seconds

A Study on the Relationship between the Climate and Space Organization of India Courtyard Housing - Focused on the Courtyard housings in Hot-dry Region and Hot-humid Region - (인도 중정형 주택의 공간 구조와 기후의 연관성에 관한 연구 - 고온 건조 지역과 고온 다습 지역의 중정형 주택을 중심으로 -)

  • Choi, Siein;Lee, Yoonhie
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.6
    • /
    • pp.3-13
    • /
    • 2014
  • The purpose of this study is to compare and analyse the difference between courtyard housings of hot-humid region and hot-dry region in India, in order to identify the affection of climate on the space arrangement of housing. The study starts from the curiosity about similar space structure of Indian housings at different climate area. Indian housings usually have courtyard at the center of its plan, though the 'Courtyard housing' is typical form of dry region's house type. Research method is comparative analysis of traditional houses of India, and the samples are selected from hot-dry city, Ahmedabad and hot-humid city, Bangalore. The conclusion is drawn through comparing main houses with traditional houses of other dry city - Jaipur - and humid cities - Trivandrum and Nilambur. It shows that both dry and humid region's housings has courtyard in common, but their spatial structures are not same at all. Houses of dry region shows organically connected spatial form, in order to maximize the cooling effect of ventilation. In contrast, the plan of houses in humid region shows opened, but can be closed in any time to prevent the penetration of moisture. Both Parekh house(Ahmedabad) and Koramangala house(Bangalore) left inconvenience of its arrangement, though the ventilation of air is the most important point of sustainability in hot region. The study could be the practical reference data for advanced sustainable housings of India which may built in the future.

Ventilation Rate Impact on Heating and Cooling Energy Consumption in Residential Buildings : Concentrated on a Detached House in Cold and Hot/Humid Climatic Zones of USA (환기량의 주거건물 냉난방에너지 소비에 대한 영향 : 미국 한랭기후 및 고온다습기후의 단독주택을 중심으로)

  • Moon, Jin-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.747-753
    • /
    • 2011
  • The purpose of this study was to quantify the impact of the ventilation rate on heating and cooling energy consumption in a detached house. For it, a series of simulations for the application of the diverse ventilation rate (ACH) were computationally conducted for a prototypical detached residential building in the cold climate (Detroit, Michigan) and hot/humid climate (Miami, Florida) of USA. Analysis revealed that ventilation is a significant heat losing source in the cold climate; thus, the higher ventilation rate significantly increases the heating energy consumption and energy cost in the cold climate; while the impact on energy increase for heating and cooling energy consumption is similar in hot/humid climate with less significancy compared to cold climate. The research outcome of this study could be a fundamental data for determining the optimal ventilation rate in terms of indoor air quality, but also building energy performance well.

Should Workers Avoid Consumption of Chilled Fluids in a Hot and Humid Climate?

  • Brearley, Matt B.
    • Safety and Health at Work
    • /
    • v.8 no.4
    • /
    • pp.327-328
    • /
    • 2017
  • Despite provision of drinking water as the most common method of occupational heat stress prevention, there remains confusion in hydration messaging to workers. During work site interactions in a hot and humid climate, workers commonly report being informed to consume tepid fluids to accelerate rehydration. When questioned on the evidence supporting such advice, workers typically cite that fluid absorption is delayed by ingestion of chilled beverages. Presumably, delayed absorption would be a product of fluid delivery from the gut to the intestines, otherwise known as gastric emptying. Regulation of gastric emptying is multifactorial, with gastric volume and beverage energy density the primary factors. If gastric emptying is temperature dependent, the impact of cooling is modest in both magnitude and duration (${\leq}5$ minutes) due to the warming of fluids upon ingestion, particularly where workers have elevated core temperature. Given that chilled beverages are most preferred by workers, and result in greater consumption than warm fluids during and following physical activity, the resultant increased consumption of chilled fluids would promote gastric emptying through superior gastric volume. Hence, advising workers to avoid cool/cold fluids during rehydration appears to be a misinterpretation of the research. More appropriate messaging to workers would include the thermal benefits of cool/cold fluid consumption in hot and humid conditions, thereby promoting autonomy to trial chilled beverages and determine personal preference. In doing so, temperature-based palatability would be maximized and increase the likelihood of workers maintaining or restoring hydration status during and after their work shift.

Design review on indoor environment of museum buildings in hot-humid tropical climate

  • Ogwu, Ikechukwu;Long, Zhilin;Okonkwo, Moses M.;Zhang, Xuhui;Lee, Deuckhang;Zhang, Wei
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.321-343
    • /
    • 2022
  • Museum buildings display artefacts for public education and enjoyment, ensuring their long-term safety and the comfort of visitors by following strict indoor environment control protocols using mechanical Heating, Ventilation and Air Conditioning (HVAC) systems to keep the (environmental) variables at a fixed comfort level. Maintaining this requires constant supply of energy currently mostly sourced from the combustion of fossil fuels which exacerbates climate change. However, a review on the effects of the indoor environmental variables on museum artefacts as well as museum visitors revealed that there is no specific point at which artefact deterioration occurs, and that there are wide ranges of conditions that guarantee the long-term safety of artefacts and human comfort. Visits to museum buildings in hot-humid tropical climate of Nigeria revealed that strict indoor environmental practices were adopted. Even when appropriate micro-climatic conditions are provided for artefacts, mechanical HVAC systems remain necessary for visitor comfort because almost no consideration is given to natural ventilation. With the current global push towards energy management, this paper reviewed passive environmental control practices, architectural design strategies, and discusses the adaptation of double skin façade with jali screens, and the notion of smart materials, which can satisfy the range of requirements for the long-term safety of artefacts and levels of human comfort in buildings in hot-humid tropical climate, without mechanical HVAC systems. This review would inspire more discussions on passive, energy efficient, smart and climate responsible popular architecture, challenging current thinking on the impact of the more accepted representative architecture.

Durability of self compacted concrete containing slag in hot climate

  • Yahiaoui, Walid;Kenai, Said;Menadi, Belkacem;Kadri, El-Hadj
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.271-288
    • /
    • 2017
  • This paper aims to investigate the effects of replacing cement with ground granulated blast furnace slag (GGBFS) in self compacting concrete in the fresh and hardened state. The performance of SCC in moderate climate is well investigated but few studies are available on the effect of hot environment. In this paper, the effect of initial water-curing period and curing conditions on the performance of SCC is reported. Cement was substituted by GGBFS by weight at two different levels of substitution (15% and 25%). Concrete specimens were stored either in a standard environment (T=$20^{\circ}C$, RH=100%) or in the open air in North Africa during the summer period (T=35 to $40^{\circ}C$; R.H=50 to 60%) after an initial humid curing period of 0, 3, 7 or 28 days. Compressive strength at 28 and 90 days, capillary absorption, sorptivity, water permeability, porosity and chloride ion penetration were investigated. The results show that the viscosity and yield stress are decreased with increasing dosage of GGBFS. The importance of humid curing in hot climates in particular when GGBFS is used is also proved. The substitution of cement by GGBFS improves SCC durability at long term. The best performances were observed in concrete specimens with 25% GGBFS and for 28 days water curing.

The Effects of the Hot, Humid Tropical Climate and Early Age Feed Restriction on Stress and Fear Responses, and Performance in Broiler Chickens

  • Al-Aqil, A.;Zulkifli, I.;Sazili, A.Q.;Omar, A.R.;Rajion, M.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1581-1586
    • /
    • 2009
  • The present study was conducted to determine the effects of two types of housing systems and early age feed restriction on stress and fear reactions, and performance in broiler chickens raised in a hot, humid tropical climate. On day 1, chicks were housed either in windowless environmentally controlled chambers (temperature was set at 32$^{\circ}C$ on day 1 and gradually reduced to 23$^{\circ}C$ by day 21) or in conventional open-sided houses (OH) with cyclic temperatures (minimum, 24$^{\circ}C$; maximum, 34$^{\circ}C$). An equal number of chicks from each housing system was subjected to either ad libitum feeding (AL) or 60% feed restriction on day 4, 5 and 6 (FR). The CH birds showed greater weight gain, higher feed consumption and better feed conversion ratios (FCR) than their OH counterparts. Feeding regimen had negligible effect on overall performance. Neither housing nor feeding regimen had a significant (p<0.05) effect on mortality rate. Although the CH birds were less stressed, as measured by plasma corticosterone concentration (CORT), than those of OH, the former showed longer TI duration suggesting higher magnitude of underlying fearfulness. A significant (p<0.05) effect of housing on heterophil/lymphocyte ratios was only noted among the AL birds where the CH birds had higher values than OH. Collectively, these results suggest that although OH birds had poorer performance and higher level of stress than CH, the former were less fearful. Although FR had negligible effect on growth performance, the regimen alleviated both stress and fear reactions in broilers.

Evaluation on the Indoor Thermal Environment and Cooling Operation Characteristics of Thermally Activated Building System integrated with Dedicated Outdoor Air System during Cooling Operation in Hot and Humid Climate of Seoul (국내 여름철 기후조건에서 DOAS와 TABS 통합시스템 냉방운전시 실내온열환경 및 운전특성 평가)

  • Lee, YoonSun;Lee, Keo-Re;Chung, Woong June;Lim, Jae-Han
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.45-55
    • /
    • 2018
  • To reduce the energy consumption of HVAC system in buildings, thermally activated building system(TABS) has been applied to low energy building because of energy efficient performance and reduction of peak load. DOAS coupled with a parallel sensible cooling could be promising because TABS handles sensible heat load only. The purpose of this study was to evaluate the indoor thermal environment and cooling operation characteristic of TABS with dedicated outdoor air system(DOAS) in Korea climate. Indoor thermal environment and operation characteristic of TABS integrated with DOAS are investigated at different TABS operation schedules and climate conditions by simulation tests. The result shows that the DOAS is more suitable for hot and humid climates. And also it show that the potential of intermittent operation of TABS.

Rectal Temperature of Lactating Sows in a Tropical Humid Climate according to Breed, Parity and Season

  • Gourdine, J.L.;Bidanel, J.P.;Noblet, J.;Renaudeau, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.832-841
    • /
    • 2007
  • Rectal Temperature;Thermoregulation;Sows;Breed;The effects of season (hot vs. warm) in a tropical humid climate, parity (primiparous vs. multiparous) and breed (Creole: CR, Large White: LW) on rectal temperature (RT) were studied for a total of 222 lactations obtained in 85 sows (43 CR and 42 LW; 56 primiparous and 166 multiparous) over a 28-d lactation, between June 2002 and April 2005. Mean daily ambient temperature was higher during the hot season than during the warm season (26.0 vs. $24.1^{\circ}C$) and relative humidity was high and similar in both seasons (89% on average). At farrowing, BW was lower (172 vs. 233 kg) and backfat thickness was higher (37 vs. 21 mm) in CR than in LW sows (p<0.01). During the hot season, the reduction of average daily feed intake (ADFI) was more pronounced in LW than in CR sows (-920 vs. -480 g/d, p<0.05). Rectal temperature was higher at 1200 than at 0700hr, which coincides with the maximum and the minimum values of daily ambient temperature. The daily RT increased ($+0.9^{\circ}C$; p<0.01) between d -3 and d 7 (d 0: farrowing day), remained constant between d 7 and d 25 and decreased (p<0.01) thereafter (i.e. $-0.6^{\circ}C$ between d 25 and d 32). The average daily RT was significantly higher during the hot than during the warm season (38.9 vs. $38.6^{\circ}C$; p<0.01). It was not affected by breed, but the difference in RT between the hot and warm seasons was more pronounced in LW than in CR sows (+0.4 vs. $+0.2^{\circ}C$; p<0.05). Parity influenced the RT response; it was greater in primiparous than in multiparous sows (38.9 vs. $38.7^{\circ}C$; p<0.01). This study suggests that thermoregulatory responses to heat stress can differ between breeds and between parities.

Investigation of school building microclimate using advanced energy equipment: Case study

  • Alwetaishi, Mamdooh;Alzaed, Ali;Sonetti, Giulia;Shrahily, Raid;Jalil, Latif
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.10-20
    • /
    • 2018
  • Buildings are responsible of major energy consumption globally. In addition, they are linked to thermal comfort. The need to provide comfort becomes more crucial in schools as they are the place where students learn, and develop their skills. This research aims to investigate the energy responsiveness of new and traditional school building design, where major variation in form, amount of external walls and glazing are different. The research focused on indoor microclimate condition of selected schools in the city of Jeddah where the climate is hot and humid using advanced tools for monitoring. The research uses advanced energy equipment to measure several aspects such as floor temperature, roof temperature, globe temperature and other factors which can lead to predictable thermal comfort of users. The findings suggest that a larger area of glazing shielded from sunlight has a greater influence on both indoor condition and general thermal sensation. The finding also suggests that the glazing ratio is a major contributor on indoor thermal pattern which can result in an increase in temperature profile between from $7-10^{\circ}C$. The findings of this research can assist in the improvement in the design of the prototype school building in hot and humid climate.

Influence of Stages of Lactation, Parity and Season on Somatic Cell Counts in Cows

  • Singh, Mahendra;Ludri, R.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1775-1780
    • /
    • 2001
  • The study was undertaken to find out the normal mean and variations in somatic cell count (SCC) of milk in crossbred and indigenous cows as influenced by stage of lactation, parity and season. On day of milk sampling the udders were tested for mastitis by California Mastitis Test (CMT). Only those cows, which were found negative in the CMT, were taken in the study. Paritywise differences in SCC were not significant between the 1st to 6th lactation and above. Similarly, stage of lactation effect, when tested at 30 day intervals, did not differ significantly. However, the seasons significantly (p<0.05) affected SCC count of milk. The SCC was lower during cold ($1.10{\times}10^5cells/ml$) and hot-dry ($1.11{\times}10^5cells/ml$) season then during hot-humid season ($2.14{\times}10^5cells/ml$). On an average SCC recorded were 1.26, 1.31, 1.54 and $1.61{\times}10^5$ cells per ml respectively in Tharparkar, Sahiwal, Karan Swiss and Karan Fries cows irrespective of stage of lactation, parity and season. Further, crossbred Karan Swiss and Karan Fries cows behave similar to the indigenous Tharparkar and Sahiwal cows but are more vulnerable to hot-humid climate then indigenous ones. Significant correlation between the SCC and milk yield during different stages of lactation (1.38 to $1.74{\times}10^5cells/ml$) and parity (1.47 to $1.63{\times}10^5cells/ml$) suggested that the SCC/ml of milk was higher during the later stages of lactation.