• 제목/요약/키워드: Hot Water Driven

검색결과 28건 처리시간 0.022초

The Future of Planetary Entry Technology

  • Park, Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권3호
    • /
    • pp.211-224
    • /
    • 2011
  • This is a written version of an hour-long lecture delivered by the author on June 30, 2011, as Plasmadynamics and Lasers Award Lecture at the AIAA 2011 summer conference in Honolulu, Hawaii. The author proposes that two areas of planetary entry physics be pursued in the future: outer planet aero-capturing and study of aerodynamics of meteoroid entries, both for the purpose of advancing the understanding of the possible extraterrestrial seeding of building blocks of life. For outer planet aero-capturing, the author proposes to develop new shock tube facilities that will produce up to 30 km/s of shock speed without causing photo-ionization of the driven gas by the radiation from the hot driver gas. Regarding meteors, the author proposes to carry out laboratory testing of the Tunguska event and of the seeding of amino acid molecules using a ballistic range which shoots a snowball laden with amino acid molecules toward a water surface.

의사 결정지원 모형에 의한 태양에너지 이용시스템의 경제성 고찰 (Economic Analysis on Solar Energy System with Decision Support Models)

  • 최인수;조덕기;최영희
    • 태양에너지
    • /
    • 제10권1호
    • /
    • pp.63-79
    • /
    • 1990
  • 태양열 주택 및 급탕의 보급 정책은 민수용 에너지의 절감 또는 대체의 의미에서 그 필요성 및 당위성을 인정받고 있으나, 다른 대체에너지와 마찬가지로 태양열 이용시스템의 경제성이 가상 문제가 되고 있는 실정이다. 본 연구에서는 태양열 주택 및 급탕의 경제성을 상세히 분석함으로써 실질적인 보급정책 자료를 제공하며, 실수요자를 위한 계몽근거를 마련하고자 한다. 본 연구에서는 태양열 이용시스템의 경제성을 정확히 수행하기 위한 의사결정지원 시스템(decision support system)을 확립시켰으며, 이에 따른 태양열 이용시스템의 열적성능 해석과 동시에 경제성 분석은 시행오차(trial & error)하에 수행할 수 있도록 각종전산 프로그램을 개발하였다. 태양열 주택 및 급탕의 열적성능 해석은 모의실험을 통하여 기상 조건과의 상관관계를 도출하고 태양열 이용시스템의 추가비용 및 연료가 이용을 현재가 (present worth) 개념으로 적응하여 산출하고, 순익분기 해석법 (break-even point analysis method) 및 수명가 산정법(life-cycle cost analysis method)으로 경제성 분식을 중점적으로 수행하였다.

  • PDF

중온수 흡수식 냉동기의 열전달 면적 최적화 (Optimization of Heat Transfer Area Distribution for a Hot Water Driven Absorption Chiller)

  • 정시영;조광운;이상수
    • 설비공학논문집
    • /
    • 제12권5호
    • /
    • pp.431-438
    • /
    • 2000
  • The major irreversibilities in absorption chillers are associated with the transfer of heat into and out from the machine and irreversible process inside the machine. By modeling only external irreversibilities(endo-reversible), a model was formulated to predict the ideal performance of a single-effect absorption chiller. Its actual performance including both external and internal irreversibilities was calculated with a in-house simulation program. The optimization of heat transfer area distribution was performed for both endo-reversible cycle and actual cycle. The equation of endo-reversible modeling was found to give about 2times higher cooling capacity than the simulation program. At optimal distribution, it was found that heat transfer area of the evaporator was about 30% of total area, that of the generator was 20%, and the rest 50% was for the absorber and condenser. The system COP for endo-reversible cycle was slightly higher than that for actual cycle. In the case of LiBr-water single-effect absorption chiller, the maximum cooling capacity was obtained near the condition that LMTD is same at all heat exchangers.

  • PDF

Experiments on Time Dependent Film Boiling on a Sphere

  • Ounpanich Bancha;Pomprapha Temsiri;Archakositt Urith;Nilsuwankosit Sunchai
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.403-406
    • /
    • 2002
  • A number of the experiments on the phenomenon in which the thermal energy was transferred from a hot sphere to the surrounding water through the film boiling process had been conducted. As the sphere only carried the thermal energy associated with its initially high temperature but did not contain any other thermal source, the film boiling was only driven by the decreasing temperature of the sphere and, thus, was time dependent. The results from the experiments showed that the temperature of the sphere was slowly decreased in the beginning. This corresponded to the period in which the sphere was penetrating the water surface. Later, when the sphere was fully submerged and the transition film boiling was observed over the whole surface, the temperature of the sphere was decreased relatively much faster. In the last stage, the temperature of the sphere was again slowly decreased. This was considered caused by the relatively low temperature of the sphere, which reduced and later ceased the film boiling process. In addition, the estimation of the departure rate of the steam bubbles from the film layer was also correlated for the experiments.

  • PDF

Water Sorption/Desorption Characteristics of Eutectic LiCl-KCl Salt-Occluded Zeolites

  • Harward, Allison;Gardner, Levi;Oldham, Claire M. Decker;Carlson, Krista;Yoo, Tae-Sic;Fredrickson, Guy;Patterson, Michael;Simpson, Michael F.
    • 방사성폐기물학회지
    • /
    • 제20권3호
    • /
    • pp.259-268
    • /
    • 2022
  • Molten salt consisting primarily of eutectic LiCl-KCl is currently being used in electrorefiners in the Fuel Conditioning Facility at Idaho National Laboratory. Options are currently being evaluated for storing this salt outside of the argon atmosphere hot cell. The hygroscopic nature of eutectic LiCl-KCl makes is susceptible to deliquescence in air followed by extreme corrosion of metallic cannisters. In this study, the effect of occluding the salt into a zeolite on water sorption/desorption was tested. Two zeolites were investigated: Na-Y and zeolite 4A. Na-Y was ineffective at occluding a high percentage of the salt at either 10 or 20wt% loading. Zeolite-4A was effective at occluding the salt with high efficiency at both loading levels. Weight gain in salt occluded zeolite-4A (SOZ) from water sorption at 20% relative humidity and 40℃ was 17wt% for 10% SOZ and 10wt% for 20% SOZ. In both cases, neither deliquescence nor corrosion occurred over a period of 31 days. After hydration, most of the water could be driven off by heating the hydrated salt occluded zeolite to 530℃. However, some HCl forms during dehydration due to salt hydrolysis. Over a wide range of temperatures (320-700℃) and ramp rates (5, 10, and 20℃ min-1), HCl formation was no more than 0.6% of the Cl- in the original salt.

Effects of temperature on the growth and ingestion rates of the newly described mixotrophic dinoflagellate Yihiella yeosuensis and its two optimal prey species

  • Kang, Hee Chang;Jeong, Hae Jin;Lim, An Suk;Ok, Jin Hee;You, Ji Hyun;Park, Sang Ah;Lee, Sung Yeon;Eom, Se Hee
    • ALGAE
    • /
    • 제35권3호
    • /
    • pp.263-275
    • /
    • 2020
  • Water temperature is known to affect the growth and feeding of marine dinoflagellates. Each dinoflagellate species grows well at a certain optimal temperature but dies at very cold and hot temperatures. Thus, changes in water temperatures driven by global warming and extremely high or low temperatures can affect the distribution of dinoflagellates. Yihiella yeosuensis is a mixotrophic dinoflagellate that can feed on only the cryptophyte Teleaulax amphioxeia and the chlorophyte Pyramimonas sp. Furthermore, it grows fast mixotrophically but rarely grows photosynthetically. We explored the direct and indirect effects of water temperature on the growth and ingestion rates of Y. yeosuensis feeding on T. amphioxeia and the growth rates of T. amphioxeia and Pyramimonas sp. under 7 different water temperatures (5-35℃). Both the autotrophic and mixotrophic growth rates of Y. yeosuensis on T. amphioxeia were significantly affected by temperature. Under the mixotrophic and autotrophic conditions, Y. yeosuensis survived at 10-25℃, but died at 5℃ and ≥30℃. The maximum mixotrophic growth rate of Y. yeosuensis on T. amphioxeia (1.16 d-1) was achieved at 25℃, whereas the maximum autotrophic growth rate (0.16 d-1) was achieved at 15℃. The maximum ingestion rate of Y. yeosuensis on T. amphioxeia (0.24 ng C predator-1 d-1) was achieved at 25℃. The cells of T. amphioxeia survived at 10-25℃, but died at 5 and ≥30℃. The cells of Pyramimonas sp. survived at 5-25℃, but died at 30℃. The maximum growth rate of T. amphioxeia (0.72 d-1) and Pyramimonas sp. (0.75 d-1) was achieved at 25℃. The abundance of Y. yeosuensis is expected to be high at 25℃, at which its two prey species have their highest growth rates, whereas Y. yeosuensis is expected to be rare or absent at 5℃ or ≥30℃ at which its two prey species do not survive or grow. Therefore, temperature can directly or indirectly affect the population dynamics and distribution of Y. yeosuensis.

땅콩과 땅콩새싹 추출물의 resveratrol과 aspartic acid 함량분석 및 지방세포분화 억제효능 (Resveratrol and Aspartic acid Contents and Antiadipogenic Effect of Peanut and Peanut Sprout Extracts)

  • 이현희;최상윤
    • 한국자원식물학회지
    • /
    • 제34권4호
    • /
    • pp.395-402
    • /
    • 2021
  • 식품산업 활용성을 고려하여 땅콩과 땅콩새싹의 열수와 주정 추출물을 제조하고 추출물내 resveratrol과 aspartic acid 함량을 UPLC-MS/MS를 이용하여 분석한 결과 땅콩새싹의 주정 추출물이 가장 높은 resveratrol과 aspartic acid 함량을 나타내었다. 또한 땅콩새싹의 주정 추출물은 3T3-L1 세포에 처리시 지방세포분화를 유의적으로 억제하였다. 따라서 땅콩새싹의 주정추출물은 기능성식품소재로 활용 가능성이 높을 것으로 판단된다. 향후 이러한 결과를 바탕으로 땅콩의 발아조건 및 추출 시간과 온도에 따른 활성성분 함량을 측정하여 최적의 활성성분 추출조건을 확립하는 연구를 진행할 계획이다.

상용급 석탄가스화플랜트 최적설계에 관한 연구 (A study on the engineering optimization for the commercial scale coal gasification plant)

  • 김병현;민종선;김재환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.131.1-131.1
    • /
    • 2010
  • This study was conducted for engineering optimization for the gasification process which is the key factor for success of Taean IGCC gasification plant which has been driven forward under the government support in order to expand to supply new and renewable energy and diminish the burden of the responsibility for the reduction of the green house gas emission. The gasification process consists of coal milling and drying, pressurization and feeding, gasification, quenching and HP syngas cooling, slag removal system, dry flyash removal system, wet scrubbing system, and primary water treatment system. The configuration optimization is essential for the high efficiency and the cost saving. For this purpose, it was designed to have syngas cooler to recover the sensible heat as much as possible from the hot syngas produced from the gasifier which is the dry-feeding and entrained bed slagging type and also applied with the oxygen combustion and the first stage cylindrical upward gas flow. The pressure condition inside of the gasifier is around 40~45Mpg and the temperature condition is up to $1500{\sim}1700^{\circ}C$. It was designed for about 70% out of fly ash to be drained out throughout the quenching water in the bottom part of the gasifier as a type of molten slag flowing down on the membrane wall and finally become a byproduct over the slag removal system. The flyash removal system to capture solid particulates is applied with HPHT ceramic candle filter to stand up against the high pressure and temperature. When it comes to the residual tiny particles after the flyash removal system, wet scurbbing system is applied to finally clean up the solids. The washed-up syngas through the wet scrubber will keep around $130{\sim}135^{\circ}C$, 40~42Mpg and 250 ppmv of hydrochloric acid(HCl) and hydrofluoric acid(HF) at maximum and it is turned over to the gas treatment system for removing toxic gases out of the syngas to comply with the conditions requested from the gas turbine. The result of this study will be utilized to the detailed engineering, procurement and manufacturing of equipments, and construction for the Taean IGCC plant and furthermore it is the baseline technology applicable for the poly-generation such as coal gasification(SNG) and liquefaction(CTL) to reinforce national energy security and create new business models.

  • PDF