Browse > Article
http://dx.doi.org/10.5139/IJASS.2011.12.3.211

The Future of Planetary Entry Technology  

Park, Chul (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
International Journal of Aeronautical and Space Sciences / v.12, no.3, 2011 , pp. 211-224 More about this Journal
Abstract
This is a written version of an hour-long lecture delivered by the author on June 30, 2011, as Plasmadynamics and Lasers Award Lecture at the AIAA 2011 summer conference in Honolulu, Hawaii. The author proposes that two areas of planetary entry physics be pursued in the future: outer planet aero-capturing and study of aerodynamics of meteoroid entries, both for the purpose of advancing the understanding of the possible extraterrestrial seeding of building blocks of life. For outer planet aero-capturing, the author proposes to develop new shock tube facilities that will produce up to 30 km/s of shock speed without causing photo-ionization of the driven gas by the radiation from the hot driver gas. Regarding meteors, the author proposes to carry out laboratory testing of the Tunguska event and of the seeding of amino acid molecules using a ballistic range which shoots a snowball laden with amino acid molecules toward a water surface.
Keywords
Entry technology; Exobiology; Tunguska event; Shock tube; Ballistic range;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Ivanov, A. G. and Ryzhanskii, V. A. (1995). possible nature of bursting of the Tunguska meteorite and breakup of the shoemaker-levy comet. Fizika Goreniya I Vzryva, 31, 117-124.
2 Jones, N., Mogul, R., Gilbert, D., Curtis, R., Seitz, J., and DiStefano, R. (2011). Finding life in our solar system. 241th American Chemical Society National Meeting and Exposition, Anaheim, CA.
3 Kim, J. G., Kwon, O. J., and Park, C. (2009). Master equation study and nonequilibrium chemical reactions for H + H2 and He + H2. Journal of Thermophysics and Heat Transfer, 23, 443-453.   DOI   ScienceOn
4 Kim, J. G., Kwon, O. J., and Park, C. (2010). Master equation study and nonequilibrium chemical reactions for hydrogen molecule. Journal of Thermophysics and Heat Transfer, 24, 281-290.   DOI   ScienceOn
5 Knowles, D. J., Wang, T., and Bowie, J. H. (2010). Radical formation of amino acid precursors in interstellar regions? Ser, Cys and Asp. Organic and Biomolecular Chemistry, 8, 4934-4939.   DOI   ScienceOn
6 Kobayashi, K. (2008). Capture and exposure of extraterrestrial organic compounds by utilizing international space station. Viva Origino, 36, 77-82.
7 Kobayashi, K., Kaneko, T., Takahashi, J., Takano, Y., and Yoshida, S. (2010). High-molecular-weight complex organics in interstellar space and their relevance to origins of life. In V. A. Basiuk, ed. Astrobiology: Emergence, Search and Detection of Life. Stevenson Ranch: American Scientific Publishers. pp. 175-186.
8 Lattelais, M., Risset, O., Pilme, J., Pauzat, F., Ellinger, Y., Sirotti, F., Silly, M., Parent, P., and Laffon, C. (2011). The survival of glycine in interstellar ices: a coupled investigation using NEXAFS experiments and theoretical calculations. International Journal of Quantum Chemistry, 111, 1163-1171.   DOI   ScienceOn
9 Fay, J. A., Moffatt, W. C., and Probstein, R. F. (1964). An analytical study of meteor entry. AIAA Journal, 2, 845-854.   DOI
10 Furudate, M., Chang, K. S., and Jeung, I. S. (2005). Calculation of H2-He flow with nonequilibrium ionization and radiation. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV. pp. 2703-2712.
11 Glavin, D. P., Dworkin, J. P., and Sandford, S. A. (2008). Detection of cometary amines in samples returned by Stardust. Meteoritics and Planetary Science, 43, 399-413.   DOI
12 Goldanskii, V. I. (1977). Interstellar grains as possible cold seeds of life. Nature, 269, 583-584.   DOI
13 Goldanskii, V. I. (1996). Cold prebiotic evolution, tunneling, chirality and exobiology. AIP Conference Proceedings, 379, 211-230.
14 Hills, J. G. and Goda, M. P. (1993). The fragmentation of small asteroids in the atmosphere. Astronomical Journal, 105, 1114-1144.   DOI
15 Hollis, B. R., Wright, M. J., Olejniczak, J., Takashima, N., Sutton, K., and Prabhu, D. (2004). Preliminary convectiveradiative heating environments for a Neptune aerocapture mission. Collection of Technical Papers--AIAA Atmospheric Flight Mechanics Conference, Providence, RI. pp. 1040-1051.
16 Iglesias-Groth, S., Cataldo, F., Ursini, O., and Manchado, A. (2010). Amino acids in comets and meteorites: stability under gamma radiation and preservation of chirality. Physics-Biological Physics, eprint arXiv:1007.4529v1.
17 Iglesias-Groth, S., Cataldo, F., Ursini, O., and Manchado, A. (2011). Amino acids in comets and meteorites: stability under gamma radiation and preservation of the enantiomeric excess. Monthly Notices of the Royal Astronomical Society, 410, 1447-1453.
18 Ilczuk, Z. (1976). A biogenic synthesis of amino acids in space. Postepy Astronautyki, 9, 115-117.
19 Chyba, C. F. (1997a). A left-handed Solar System? Nature, 389, 234-235.
20 Chyba, C. F. (1997b). Life on other moons. Nature, 385, 201.   DOI   ScienceOn
21 Chyba, C. F. (2000). Energy for microbial life on Europa. Nature, 403, 381-382.   DOI   ScienceOn
22 Chyba, C. F., Thomas, P. J., Brookshaw, L., and Sagan, C. (1990). Cometary delivery of organic molecules to the early Earth. Science, 249, 366-373.   DOI
23 Chyba, C. F., Thomas, P. J., and Zahnle, K. J. (1993). The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid. Nature, 361, 40-44.   DOI
24 Cohen, J. (1995). Getting all turned around over the origins of life on Earth. Science, 267, 1265-1266.   DOI   ScienceOn
25 Cooper, D. M., Borucki, W. J., and Chien, K. Y. (1972). Radiative cooling of shock-heated air in an explosively driven shock tube. Physics of Fluids, 15, 39-43.   DOI
26 Drobyshevski, E. M. (2009). Tunguska-1908 and similar events in light of the New Explosive Cosmogony of minor bodies. Astrophysics-Earth and Planetary Astrophysics, eprint arXiv:0903.3309.
27 Elsila, J. E., Dworkin, J. P., Bernstein, M. P., Martin, M. P., and Sandford, S. A. (2007). Mechanisms of amino acid formation in interstellar ice analogs. Astrophysical Journal, 660, 911-918.   DOI
28 Engel, M. H. and Macko, S. A. (1997). Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature, 389, 265-268.   DOI   ScienceOn
29 Engel, M. H., Macko, S. A., and Silfer, J. A. (1990). Carbon isotope composition of individual amino acids in the Murchison meteorite. Nature, 348, 47-49.   DOI   ScienceOn
30 Engel, M. H. and Nagy, B. (1982). Distribution and enantiomeric composition of amino acids in the Murchison meteorite. Nature, 296, 837-840.   DOI
31 Blank, J. G., Miller, G. H., Ahrens, M. J., and Winans, R. E. (2001). Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds. Origins of Life and Evolution of the Biosphere, 31, 15-51.   DOI   ScienceOn
32 Baldwin, B. and Sheaffer, Y. (1971). Ablation and breakup of large meteoroids during atmospheric entry. Journal of Geophysical Research, 76, 4653-4668.   DOI
33 Basiuk, V. A. (2001). Formation of amino acid precursors in the interstellar medium. A DFT study of some gas-phase reactions starting with methylenimine. Journal of Physical Chemistry A, 105, 4252-4258.   DOI   ScienceOn
34 Belloche, A., Menten, K. M., Comito, C., Muller, H. S. P., Schilke, P., Ott, J., Thorwirth, S., and Hieret, C. (2008). Detection of amino acetonitrile in Sgr B2(N). Astronomy and Astrophysics, 482, 179-196.   DOI   ScienceOn
35 Bogdanoff, D. W. and Park, C. (2002). Radiative interaction between driver and driven gases in an arc-driven shock tube. Shock Waves, 12, 205-214.   DOI
36 Brack, A. (2000). Life in the universe. In B. Kaldeich-Schurmann, ed. Darwin and Astronomy: The Infrared Space Interferometer: Proceedings of an International Symposium, Stockholm, Sweden, 17-19 November 1999 (European Space Agency Special Publication SP-451). Noordwijk: ESA Publications. pp. 151-158.
37 Brack, A. (2007). From interstellar amino acids to prebiotic catalytic peptides: a review. Chemistry and Biodiversity, 4, 665-679.   DOI   ScienceOn
38 Bredehoeft, J. H. and Meierhenrich, U. J. (2008). Amino acid structures from UV irradiation of simulated interstellar ices. In N. Takenaka, ed. Recent Developments of Chemistry and Photochemistry in Ice. Trivandrum, Kerala, India: Transworld Research Network. pp. 175-202.
39 Winans, R. E., Blank, J. G., Ahrens, M. J., and Grey, G. T. (2000). Investigation of the stability of amino acids in possible early earth comet impacts. 219th National American Chemical Society Meeting, San Francisco, CA.
40 Breslow, R. (2011). A likely possible origin of homochirality in amino acids and sugars on prebiotic earth. Tetrahedron Letters, 52, 2028-2032.   DOI   ScienceOn
41 Zahnle, K. and Grinspoon, D. (1990). Comet dust as a source of amino acids at the Cretaceous/Tertiary boundary. Nature, 348, 157-160.   DOI   ScienceOn
42 Zhdan, I. A., Stulov, V. P., and Stulov, P. V. (2004a). Characteristic elements of a fractured solid in supersonic flow. Doklady Physics, 49, 680-682.   DOI
43 Zhdan, I. A., Stulov, V. P., and Stulov, P. V. (2004b). Aerodynamic interaction of two bodies in a supersonic flow. Doklady Physics, 49, 315-317.   DOI
44 Suess, B., Breme, K., and Meierhenrich, U. J. (2005). Biogenesis and evolution, identification of molecular life building blocks in the universe. Bioforum, 28, 45-47.
45 Al-Mufti, S., Olavesen, A. H., Hoyle, F., and Wickramasinghe, N. C. (1982). Interstellar absorptions at ${\lambda}=3.2{\mu}m\;and\;3.3{\mu}m$. Astrophysics and Space Science, 84, 259-261.   DOI
46 Avetisov, V. A., Goldanskii, V. I., and Kuz'min, V. V. (1991). Handedness, origin of life and evolution. Physics Today, 44, 33-41.
47 Simakov, M. B. (2004). Exobiology of Titan. In K. Fletcher, ed. Titan: from Discovery to Encounter: Proceedings of the International Conference, 13-17 April 2004, Noordwijk, the Netherlands (European Space Agency Special Publication SP-1278). Noordwijk: ESA Publications. pp. 395-407.
48 Steel, D. (1991). Cometary supply of terrestrial organics: lessons from the K/T and the present epoch. Origins of Life and Evolution of Biospheres, 21, 339-357.   DOI
49 Stulov, V. P. (2010). Transformation of the kinetic energy of a meteoroid during its breakup in the atmosphere. Doklady Physics, 55, 366-367.   DOI
50 Thiemann, W. H. and Meierhenrich, U. (2001). ESA mission ROSETTA will probe for chirality of cometary amino acids. Origins of Life and Evolution of Biospheres, 31, 199-210.   DOI   ScienceOn
51 Vasilyev, N. V. (1998). The Tunguska Meteorite problem today. Planetary and Space Science, 46, 129-150.   DOI   ScienceOn
52 Turco, R. P., Toon, O. B., Park, C., Whitten, R. C., Pollack, J. B., and Noerdlinger, P. (1981). Tunguska meteor fall of 1908: effects on stratospheric ozone. Science, 214, 19-23.   DOI   ScienceOn
53 Turco, R. P., Toon, O. B., Park, C., Whitten, R. C., Pollack, J. B., and Noerdlinger, P. (1982). An analysis of the physical, chemical, optical, and historical impacts of the 1908 Tunguska meteor fall. Icarus, 50, 1-52.   DOI   ScienceOn
54 Vandenbussche, S., Reisse, J., Bartik, K., and Lievin, J. (2011). The search for a deterministic origin for the presence of nonracemic amino-acids in meteorites: a computational approach. Chirality, 23, 367-373.   DOI   ScienceOn
55 Vazquez, M. (2005). Search for life in the solar system. In M. Vazquez, ed. Fundaments and Challenges in Astrobiology. Kerala, India: Research Signpost. pp. 213-256.
56 Park, C. and De Rose, C. E. (1980). Shape Change of Galileo Probe Models in Free-Flight Tests (NASA Technical Memorandum 81209). National Aeronautics and Space Administration.
57 Pierazzo, E. and Chyba, C. F. (1999). Amino acid survival in large cometary impacts. Meteoritics and Planetary Science, 34, 909-918.   DOI
58 Pilling, S., Andrade, D. P. P., De Castilho, R. B., Cavasso-Filho, R. L., Lago, A. F., Coutinho, L. H., De Souza, G. G. B., Boechat-Roberty, H. M., and De Brito, A. N. (2008). Survival of gas phase amino acids and nucleobases in space radiation conditions. Astrophysics, eprint arXiv:0803.3751v0801.   DOI
59 Raulin, F. (2008). Astrobiology and habitability of Titan. Space Science Reviews, 135, 37-48.   DOI
60 Raulin, F. (2009). Planetary astrobiology-the outer solar system. In J. T. F. Wong and A. Lazcano, eds. Prebiotic Evolution and Astrobiology. Austin: Landes Bioscience. pp. 18-28.
61 Romig, M. F. (1965). Physics of meteor entry. AIAA Journal, 3, 385-394.   DOI
62 Ross, D. S. (2006). Cometary impact and amino acid survival--chemical kinetics and thermochemistry. Journal of Physical Chemistry A, 110, 6633-6637.   DOI   ScienceOn
63 Schulze-Makuch, D., Irwin, L. N., and Guan, H. (2002). Search parameters for the remote detection of extraterrestrial life. Planetary and Space Science, 50, 675-683.   DOI   ScienceOn
64 Shapiro, R. and Schulze-Makuch, D. (2009). The search for Alien life in our solar system: strategies and priorities. Astrobiology, 9, 335-343.   DOI   ScienceOn
65 Shaw, A. (2008). Life in a different solvent: astrobiology on Titan. Chemistry Review, 17, 2-5.
66 Shock, E. L. and McKinnon, W. B. (1993). Hydrothermal processing of cometary volatiles-applications to Triton. Icarus, 106, 464-477.   DOI   ScienceOn
67 Munoz Caro, G. M. and Martinez-Frias, J. (2007). Carbonaceous dust in planetary systems: origin and astrobiological significance. In A. Wilson, ed. Workshop on Dust in Planetary Systems, 26-30 September 2005, Kauai, Hawaii (European Space Agency Special Publication SP-643). Noordwijk: ESA Publications. pp. 133-138.
68 Neish, C. D. (2008). Formation of Prebiotic Molelcules in Liquid Water Environments on the Surface of Titan. PhD Thesis, University of Arizona.
69 Norman, L. H. (2011). Is there life on ... Titan? Astronomy and Geophysics, 52, 1.39-31.42.   DOI   ScienceOn
70 Oberbeck, V. R. and Aggarwal, H. (1991). Comet impacts and chemical evolution on the bombarded Earth. Origins of Life and Evolution of Biospheres, 21, 317-338.   DOI
71 Owen, T. (2008). The contributions of comets to planets, atmospheres, and life: insights from Cassini-Huygens, Galileo, Giotto, and inner planet missions. Space Science Reviews, 138, 301-316.   DOI
72 Park, C. (1990). Nonequilibrium Hypersonic Aerothermodynamics. New York: Wiley. pp. 89-92.
73 Park, C. (2004). Effect of lyman radiation on nonequilibrium ionization of atomic hydrogen. 37th AIAA Thermophysics Conference, Portland, OR.
74 Park, C. (2010). Nonequilibrium ionization and radiation in hydrogen-helium mixtures. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL.
75 Park, C. (2011a). An approximation for ionization rate in a hydrogen-helium mixture. 42nd AIAA Thermophysics Conference, Honolulu, HI.
76 Park, C. (2011b). Nonequilibrium chemistry and radiation in neptune entry. Journal of Spacecraft and Rockets in press.
77 Park, C. (2011c). Viscous shock layer calculation of stagnation-region heating environment in neptune aerocapture. Journal of Spacecraft and Rockets in press.
78 Lee, C. W., Kim, J. K., Moon, E. S., Minh, Y. C., and Kang, H. (2009). Formation of glycine on ultraviolet-irradiated interstellar ice-analog films and implications for interstellar amino acids. Astrophysical Journal, 697, 428-435.   DOI
79 Leibowitz, L. P. (1973). Measurements of the structure of an ionizing shock wave in a hydrogen-helium mixture. Physics of Fluids, 16, 59-68.   DOI
80 Livingston, F. R. and Poon, P. T. Y. (1976). Relaxation distance and equilibrium electron density measurements in hydrogen-helium plasmas. AIAA Journal, 14, 1335-1337.   DOI   ScienceOn
81 Lunine, J. I. (2009). Saturn's titan: a strict test for life's cosmic ubiquity. Astrophysics-Earth and Planetary Astrophysics, eprint arXiv:0908.0762v2.
82 Martins, Z. (2011). Organic chemistry of carbonaceous meteorites. Elements, 7, 35-40.   DOI
83 Matsuyama, S., Ohnishi, N., Sasoh, A., and Sawada, K. (2005). Numerical simulation of galileo probe entry flowfield with radiation and ablation. Journal of Thermophysics and Heat Transfer, 19, 28-35.   DOI   ScienceOn
84 McKay, C. P. and Smith, H. D. (2005). Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus, 178, 274-276.   DOI   ScienceOn
85 Meierhenrich, U. J. (2002). Comets and terrestrial life. Nachrichten aus der Chemie, 50, 338-341.
86 Meierhenrich, U. J. (2009). Traces from outer space. Amino acids and the emergence of life. Chemie in Unserer Zeit, 43, 204-209.   DOI   ScienceOn
87 Melott, A. L., Thomas, B. C., Dreschhoff, G., and Johnson, C. K. (2010). Cometary airbursts and atmospheric chemistry: Tunguska and a candidate Younger Dryas event. Geology, 38, 355-358.   DOI   ScienceOn
88 Miller, S. L. (1953). A production of amino acids under possible primitive earth conditions. Science, 117, 528-529.   DOI   ScienceOn
89 Irwin, L. N. and Schulze-Makuch, D. (2001). Assessing the plausibility of life on other worlds. Astrobiology, 1, 143-160.   DOI   ScienceOn