• Title/Summary/Keyword: Hot Press Forming

Search Result 79, Processing Time 0.026 seconds

Develop of Strain Measurement and Characterization of Mechanical Behavior for Hot Press Forming (열간프레스성형에서의 변형 측정장치 개발 및 기계적 거동의 물성화)

  • Yoo, Dong-Hoon;Seok, Dong-Yoon;Kim, Don-Gun;Ahn, Kang-Hwan;Son, Hyun-Sung;Kim, Gyo-Sung;Chung, Kwan-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.198-201
    • /
    • 2009
  • As a way to improve the safety of automotives and to reduce the weight of vehicles, new forming technologies and advanced materials are in high demand in the automotive industry. However, the advanced strength steel has inferior formability and large springback. In order to overcome such drawbacks, the hot press forming process (HPF) has been being applied for forming of automotive sheet parts. In this work, new equipment was suggested to measure unlimited displacement range compared to previous one which was able to measure only up to 10mm displacement range. The external extensometer connected with grips by wire was applied to equipment so that total strain range was measured up to failure also in high temperature. And the finite element analysis was conducted to characterize the mechanical properties of the HPF steel. Finally, the flow curves were represented by utilizing the Johnson-Cook type equation both in uniform and post-uniform deformation regions.

  • PDF

The Effect of Forming Parameter on Mechanical Properties in Hot Bending Process of Boron Steel Sheet (보론강판의 열간 벤딩 공정에서 성형인자가 기계성질에 미치는 영향)

  • Kwon, K.Y.;Sin, B.S.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.203-209
    • /
    • 2010
  • In the hot press forming process (HPF), a martensitic structure is obtained by controlling the cooling rate when cooling a boron sheet that is heated up to over $900^{\circ}C$. The HPF process has various advantages such as the improvement in formability and material properties and minimal spring back of the deformed materials. The factors related to the cooling rate depend on the heat transfer characteristics between heated materials and dies. Therefore, in this study, the cooling rate is controlled by adjusting the heat transfer coefficient of the material at the pressing process. And, the mechanical properties and microstructure of the deformed material is demonstrated during the HPF process where cold dies are used to form the heated steel plate. This is achieved by varying the major forming conditions that control the cooling rate regarded as the most important process parameter.

Try out and Analytical Researches on Quenching Process of Coupled Torsion Beam Axle using Boron Steel Tube (보론강을 이용한 CTBA의 후열처리 공정 실험 및 해석)

  • Yoon, S.J.;Park, J.K.;Kim, Y.S.;Suh, C.H.;Lee, K.H.;Kim, R.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.181-184
    • /
    • 2009
  • The hot press farming process, which is the press hardening of steel parts using cold dies, can utilize both ease of shaping and high strength due to the hardening effect of rapid quenching during the pressing. In this study, a thermo-elastoplastic analysis of the hot press forming process using the finite element method was performed in order to investigate the deformation behavior and temperature history during the process and the mechanical properties of the pressed parts.

  • PDF

Forming Analysis and Experiment of Hard to Forming T Shape Aluminum Part (난성형 T형상 알루미늄 부품의 성형공정 해석 및 실험)

  • Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • A process comprising a hot extrusion process and a warm forging process was designed to form a T-shaped aluminum structural component with a high degree of difficulty by the plastic forming method. A circular cylindrical part was extruded with a hot extrusion process, and then an embossing part was formed with a warm forging process. The formability and the maximum load required for forming were then determined using a forming analysis program. The hot extrusion process was executed at $450^{\circ}C$ under the extrusion speed at 6 mm/s, while the warm forging process was executed at $260^{\circ}C$ under the forging speed at 150 mm/s. For both the processes, a condition by which friction would not be generated between the mold and the material was implemented. The analysis results showed that the load required for hot extrusion was 1,019 tons, while the load required for the warm forging was 534 tons. The T-shaped part was manufactured by using a 1,600 tons capacity press. The graphite lubricant was coated on the mold as well as the material. A forming experiment was performed under the same condition with the analysis condition. The measured values from the load cell were 1,210 tons in the hot extrusion process and 600 tons in the warm forging process.

Electrochemical Corrosion and Hydrogen Diffusion Behaviors of Zn and Al Coated Hot-Press Forming Steel Sheets in Chloride Containing Environments (아연 및 알루미늄이 도금된 Hot-Press Forming 강의 염화물 환경 내 전기화학적 부식 및 수소확산거동)

  • Park, Jin-seong;Lee, Ho Jong;Kim, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.286-294
    • /
    • 2018
  • Hot-press forming(HPF) steel can be applied successfully to auto parts because of its superior mechanical properties. However, its resistances to aqueous corrosion and the subsequent hydrogen embrittlement(HE) decrease significantly when the steel is exposed to corrosive environments. Considering that the resistances are greatly dependent on the properties of coating materials formed on the steel surface, the characteristics of the corrosion and hydrogen diffusion behaviors regarding the types of coating material should be clearly understood. Electrochemical polarization and impedance measurements reveal a higher corrosion potential and polarization resistance and a lower corrosion current of the Al-coating compared with Zn-coating. Furthermore, it was expected that the diffusion kinetics of the hydrogen atoms would be much slower in the Al-coating, and this would be due mainly to the much lower diffusion coefficient of hydrogen in the Al-coating with a face-centered cubic structure. The superior surface inhibiting effect of the Al-coating, however, is degraded by the formation of local cracks in the coated layer under severe stress conditions, and therefore further study will be necessary to gain a clearer understanding of the effect of cracks formed on the coated layer on the subsequent corrosion and hydrogen diffusion behaviors.

Study on Multi-stage Hot Forming of A6061 Aluminum Alloy (A6061 알루미늄 합금의 다단 열간성형에 관한 연구)

  • R. H. Kim;M. H. Oh;Y. S. Jeong;S. M. Son;M. Y. Lee;J. H. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.161-168
    • /
    • 2024
  • Aluminum alloy sheets, compared to conventional steel sheets, face challenges in press forming due to their lower elongation. To enhance their formability, extensive research has focused on forming technologies at elevated temperatures, specifically warm forming at around 300℃ and hot forming at approximately 500℃. This study proposes that the formability of aluminum alloy sheets can be significantly enhanced using a multi-stage hot forming technique. The research also investigates whether the strength of the A6061 aluminum alloy, known for its precipitation hardening, can be maintained when formed below the precipitate solid solution temperature. In the experiments, the A6061-T6 sheet underwent heating and rapid cooling between 250 and 500℃. The mechanical properties were evaluated at each stage of the process. The findings revealed that when the initial heat treatment was below 350℃, the strength of the material remained unchanged. However, at temperatures above 400℃, there was a noticeable decrease in strength coupled with an increase in elongation. Conversely, when the secondary heat treatment was conducted at temperatures of 350℃ or lower, the strength remained comparable to that of the initial heat treated material. However, at higher temperatures, a reduction in strength and an increase in elongation were observed.

Blank Shape Design Process for a Hot Stamped Front Pillar and its Experimental Verification (프론트필러의 핫스템핑 공정설계를 위한 블랭크형상의 최적화 연구)

  • Kim, J.T.;Kim, B.M.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.186-194
    • /
    • 2012
  • Hot stamping is a forming method that offers various advantages such as superior mechanical properties, good formability, and very small springback. However, relatively large-sized parts, such as front pillars, exhibit poor formability when hot stamped due to the limited material flow and thickness reduction imparted by the process. This reduction in thickness can also lead to cracks. One of the reasons is the relatively high friction between the sheet and the die. In this study, in order to obtain the optimal conditions for hot stamping of front pillars, various process parameters were studied and analyzed using the sheet forming software, J-STAMP. The effects of various parameters such as the die structure, blank shape, blank holding force, punch speed, clearance(upper and lower dies) and distance block were analyzed and compared.

The Effect of Mechanical Property of Tailor Welding Blank and Hot Press Forming Process by the Different Anti-oxidation Coating Treatment on Boron-steel Sheet (핫프레스포밍 공정에서 내산화 코팅처리가 TWB 용접부 특성에 미치는 영향)

  • Kim, Sang-Gweon;Lim, Ok-Dong;Lee, Jae-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.6
    • /
    • pp.283-291
    • /
    • 2012
  • In order to increase the anti-oxidation property during the tailor welding blanked hot press forming process for a high strength boron steel sheet, we performed a different coating method on the boron-steel sheet such as 87% Al - 13% Si and Fe - 8.87 Zn dipping plating procedure. However, during laser welding process, the Al-Si coated steel sheet has showed a low tensile strength and about half value of elongation than the original boron-steel sheet. Aluminum and silicon, elements of coating layer were diffused into the boron-steel matrix and have shown a low strength result than non-coated specimen. On the other hand, Zinc-coated boron-steel has expectedly showed a excellent tensile strength and micro-harness value in the welded area like original boron-steel.

Estimation of Conditions of Incremental Hot Rotary Forging Process for Monobloc Tubular Drive Shaft (일체형 중공 드라이브 샤프트 제작을 위한 점진적 열간 로터리 단조 공정 조건 예측)

  • Lee, Ho-Jin;Guk, Dae-Sun;Ahn, Dong-Gyu;Jung, Jong-Hoon;Seol, Sang-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.287-293
    • /
    • 2016
  • A monobloc tubular drive shaft is designed to obtain the improved structural safety and the weight reduction of the drive shaft together. The monobloc tubular drive shaft can be manufactured from an incremental hot rotary forging process. The aim of this study was to experimentally determine conditions of an incremental hot rotary forging process for a monobloc tubular drive shaft. Induction heating experiments were performed to estimate a proper heating time of an initial workpiece in an induction heating process. Several incremental hot rotary forging experiments were carried out using a mechanical press with the designed set-up. The step distance and the step angle were chosen as controllable forming parameters. Based on the results of the experiments, the influence of forming parameters on the quality of the forged part was investigated. Finally, a forming map and a proper forming condition of the incremental hot rotary forging process were estimated.

A study on Linear Pattern Fabrication of Plate-type PC (PC소재의 선형 패턴 제작에 관한 연구)

  • Joung, Y.N.;Lee, E.K.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.277-280
    • /
    • 2008
  • Recently, a demand of nano/micro patterned polymer for display or biochip has been rising. Then many studies have been carried out. Nano/micro-embossing is a deformation process where the workpiece materials is heated to permit easier material flow and then forced over a planar patterned tool. In this work, the hot-emboss process is performed with different forming conditions; forming temperature, load, press hold time, to get the proper condition for linear pattern fabrication on plated-type polymers (PC). Replicated pattern depth increases in proportion to the forming temperature, load and time. Reduction of the workpiece thickness increases according to press hold time. In process of time, reduction ratio of workpiece thickness decreases because of surface area increment of the workpiece and pressure decline on it.

  • PDF