• 제목/요약/키워드: Hot Pool Model

검색결과 19건 처리시간 0.025초

DEVELOPMENT OF A TWO-DIMENSIONAL THERMOHYDRAULIC HOT POOL MODEL AND ITS EFFECTS ON REACTIVITY FEEDBACK DURING A UTOP IN LIQUID METAL REACTORS

  • Lee, Yong-Bum;Jeong, Hae-Yong;Cho, Chung-Ho;Kwon, Young-Min;Ha, Kwi-Seok;Chang, Won-Pyo;Suk, Soo-Dong;Hahn, Do-Hee
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1053-1064
    • /
    • 2009
  • The existence of a large sodium pool in the KALIMER, a pool-type LMR developed by the Korea Atomic Energy Research Institute, plays an important role in reactor safety and operability because it determines the grace time for operators to cope with an abnormal event and to terminate a transient before reactor enters into an accident condition. A two-dimensional hot pool model has been developed and implemented in the SSC-K code, and has been successfully applied for the assessment of safety issues in the conceptual design of KALIMER and for the analysis of anticipated system transients. The other important models of the SSC-K code include a three-dimensional core thermal-hydraulic model, a reactivity model, a passive decay heat removal system model, and an intermediate heat transport system and steam generation system model. The capability of the developed two-dimensional hot pool model was evaluated with a comparison of the temperature distribution calculated with the CFX code. The predicted hot pool coolant temperature distributions obtained with the two-dimensional hot pool model agreed well with those predicted with the CFX code. Variations in the temperature distribution of the hot pool affect the reactivity feedback due to an expansion of the control rod drive line (CRDL) immersed in the pool. The existing CRDL reactivity model of the SSC-K code has been modified based on the detailed hot pool temperature distribution obtained with the two-dimensional pool model. An analysis of an unprotected transient over power with the modified reactivity model showed an improved negative reactivity feedback effect.

원환풀내에서 Quencher Device에 의한 고온수 분출로 일어나는 혼합유동에 관한 연구 (Analysis of Flow and Thermal Mixing Responses on Hot Water Discharge by Quencher Devices into an Annular Water pool)

  • 최성석;김종보
    • 대한설비공학회지:설비저널
    • /
    • 제14권1호
    • /
    • pp.21-30
    • /
    • 1985
  • One of the problems with the Boiling Water Reactor involves the flow and thermal mixings in the suppression water pool high pressure steam discharge into the pool in case of emergency core relief. Varioos heat sensitive devices and pumps for the reactor core cooling are installed in the middle of the suppression pool. Especially the pumps utilize pool water in order to cool the reactor core in emergency cases. In this case, the water temperature for the reactor cool ins should be below a certain temperature specified by the reactor design. In the present investigation, in other to determine the optimum locations of these pumping devices, numerical solutions have been obtained for the model to determine the f low mixing characteristics. Experimental investigations have also been carried out for the flow mixing and for the thermal mixing in the pool during the discharge. Considering that the discharge steam through the Quenching Device becomes hot water immediately in the water pool, the steam- equivalent hot water has been utilized. Examining these characteristices, it becomes possible to deform me the best locations for RCIC, LPCI , HPCI pumps in the suppression water pool for the emermency reactor core cooling.

  • PDF

실내수영장의 에너지 소비요소별 에너지 절약효과에 관한 연구 (A Study on the Energy Conservation Effect of Each Energy Consumption Component In Indoor Swimming Pools)

  • 김영돈;권규동;여명석;김광우
    • 설비공학논문집
    • /
    • 제14권12호
    • /
    • pp.1092-1101
    • /
    • 2002
  • The objective of this study is to develop energy saving strategies for indoor swimming pools and to estimate the effect of each energy saving strategy. For this purpose, field measurements regarding pool water heating energy, domestic hot water heating energy are conducted and a base energy consumption model is implemented using the DOE-2.1E program. The results of the study reveal that 25% of the total pool water heating energy may be saved by using night time pool covers, 27% of the total domestic hot water heating energy may be saved by using a waste water heat recovery system (effic. 60%), and of the total ventilation energy may be saved using an exhaust air heat recovery system (effic. 60%).

Experimental study on the influence of heating surface inclination angle on heat transfer and CHF performance for pool boiling

  • Wang, Chenglong;Li, Panxiao;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.61-71
    • /
    • 2022
  • Pool boiling heat transfer is widely applied in nuclear engineering fields. The influence of heating surface orientation on the pool boiling heat transfer has received extensive attention. In this study, the heating surface with different roughness was adopted to conduct pool boiling experiments at different inclination angles. Based on the boiling curves and bubble images, the effects of inclination angle on the pool boiling heat transfer and critical heat flux were analyzed. When the inclination angle was bigger than 90°, the bubble size increased with the increase of inclination angle. Both the bubble departure frequency and critical heat flux decreased as the inclination angle increased. The existing theoretical models about pool boiling heat transfer and critical heat flux were compared. From the perspective of bubble agitation model and Hot/Dry spot model, the experimental phenomena could be explained reasonably. The enlargement of bubble not only could enhance the agitation of nearby liquid but also would cause the bubble to stay longer on the heating surface. Consequently, the effect of inclination angle on the pool boiling heat transfer was not conspicuous. With the increase of inclination angle, the rewetting of heating surface became much more difficult. It has negative effect on the critical heat flux. This work provides experimental data basis for heat transfer and CHF performance of pool boiling.

Development of a System Analysis Code, SSC-K, for Inherent Safety Evaluation of The Korea Advanced Liquid Metal Reactor

  • Kwon, Young-Min;Lee, Yong-Bum;Chang, Won-Pyo;Dohee Hahn;Kim, Kyung-Doo
    • Nuclear Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.209-224
    • /
    • 2001
  • The SSC-K system analysis code is under development at the Korea Atomic Energy Research Institute (KAERI) as a part of the KALIMER project. The SSC-K code is being used as the principal tool for analyzing a variety of off-normal conditions or accidents of the preliminary KALIMER design. The SSC-K code features a multiple-channel core representation coupled with a point kinetics model with reactivity feedback. It provides a detailed, one-dimensional thermal-hydraulic simulation of the primary and secondary sodium coolant circuits, as well as the balance-of-plant steam/water circuit. Recently a two-dimensional hot pool model was incorporated into SSC-K for analysis of thermal stratification phenomena in the hot pool. In addition, SSC-K contains detailed models for the passive decay heat removal system and a generalized plant control system. The SSC-K code has also been applied to the computational engine for an interactive simulation of the KALIMER plant. This paper presents an overview of the recent activities concerned with SSC-K code model development This paper focuses on both descriptions of the newly adopted thermal hydraulic and neutronic models, and applications to KALIMER analyses for typical anticipated transients without scram.

  • PDF

구획화재에서의 스프링클러 작동시간 예측 연구 (Prediction of sprinkler activation time in compartment fire)

  • 김명배;한용식
    • 한국화재소방학회논문지
    • /
    • 제10권4호
    • /
    • pp.13-18
    • /
    • 1996
  • 구획화재에서 스프링클러 작동순간의 연층온도와 연층높이를 구하는 모델링 방법을 기술하였다. 스프링클러 작동모델에서의 시정수는 실험으로부터 얻어진 RTI(Response time index)와 스프링클러 주위의 유속을 평가할 수 있는 실험식으로부터 구하였고, 시간에 따른 연층온도 변화는 기존의 2층 zone model을 이용하였다. 모델에 의한 계산결과를 검증하기 위하여 가솔린 pool 화재를 이용한 실험을 수행하여 계산결과와 실험결과를 비교하였다. 본 연구의 결과인 스프링클러 작동순간의 연층온도와 높이는 스프링클러 분무와 화재 Plume의 상호작용을 해석하기 위한 필요한 입력자료로 사용할 수 있다.

  • PDF

A Study on Smoke Movement in Room Fires with Various Pool Fire Location

  • Jeong, Jin-Yong;Ryou, Hong-Sun
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1485-1496
    • /
    • 2002
  • In order to investigate the fire-induced smoke movement in a three-dimensional room with an open door, numerical and experimental study was performed. The center, wall, and corner fire plumes for various sized fires were studied experimentally in a rectangular pool fire using methanol as a fuel. The numerical results from a self-developed SMEP (Smoke Movement Estimating Program) field model were compared with experimental results obtained in this and from literature. Comparisons of SMEP and experimental results have shown reasonable agreement. As the fire strength became larger for the center fires, the air mass flow rate in the door, average hot layer temperature, flame angle and mean flame height were observed to increase but the doorway-neutral-planeheight and the steady-state time were observed to decrease. Also as the wall effect became larger in room fires, the hot layer temperature, mean flame height, doorway-neutral-planeheight and steady-state time were observed to increase. In the egress point of view considering the smoke filling time and the early spread of plume in the room space, the results of the center fire appeared to be more dangerous as compared with the wall and the corner fire. Thus it is necessary to consider the wall effect as an important factor in designing efficient fire protection systems.

직접압연공정의 특성해석 및 공정변수 선정 (Characteristic Analysis and Selection of Process Parameters in Direct Rolling Processes)

  • 박영준;조형석;이원호;강태욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.384-388
    • /
    • 1997
  • Recently,direct rolling process has been drawing increasing interests because production cost be greatly reduced by eliminating subsequent hot rolling processes. Such a process has been characterized to prosuce thin steel strip (thickness 1~5mm) directly from molten metal and to skip over the conventional hot rolling processes. However, since there are several process parameters, which affect the quality of product,and their relationship between the parametersare very complex,it is therefore very difficult to realize the process design and the quality control. To overcome these difficulties quantitative relationship between the parameters are investigated through a numerical analysis. Form these results, it is found that solidification final point is the most important paramter which is critical to quality of the strip. Also,the multiple regression model is obtianed to determine their relationship from the solidification final point and roll separating force which can be easily estimated

  • PDF

KALIMER 고온풀 자유액면 거동 해석 (Analysis of free surface motions in the hoot Pool of KALIMER)

  • 김성오;어재혁;최훈기
    • 한국전산유체공학회지
    • /
    • 제7권3호
    • /
    • pp.44-52
    • /
    • 2002
  • An analytic methodology was developed for free surface motions between liquid metal coolant and cover gas in order to calculate the phenomena of gas entrainment in hot pool surface through IHX EMP and reactor core. The methodology was setup by applying the first order VOF convection model to CFX4 general purpose fluid dynamics analysis code. The methodology was validated by applying it to an experimental apparatus designed for free surface motions of KALIMER reactor. The distributions of free surface calculated by the present methodology were almost coincident with the experimental data. The developed methodology was applied to the KALIMER reactor of full power operating condition. The shapes of the free surface were nearly uniform. From the results, it was found that the altitude of the free surface from the IHX inlet nozzle of KALIMER reactor is high enough not to affect to free surface motions of generating gas bubbles from the turbulent shear flows such as hydraulic jump and water falls.