• 제목/요약/키워드: Hot Forming Quenching

검색결과 20건 처리시간 0.024초

유한요소해석을 이용한 열간프레스성형 적용 로어 컨트롤 암의 성형품질 조건 최적화 (Optimization of Conditions of Forming Quality for Hot-press-formed Lower Control Arm Using Finite Element Analysis)

  • 손현성;최병근
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.45-50
    • /
    • 2011
  • Hot-Press-Forming (HPF), an advanced sheet metal forming method using stamping at a high temperature of about $900^{\circ}C$ and quenching in an internally cooled die set, is one of the most successful forming process in producing crash-resistant parts such as pillars and bumpers with complex shape, ultrahigh strength, and minimum springback. To optimize conditions of a forming quality in HPF process and secure a safe product without any failures, such as fractures and wrinkling, the simulations based on the coupled thermo-mechanical analysis for a hot-press-formed lower control arm are applied with Taguchi's orthogonal array experiment. Three factor variables - the friction coefficient, blank shape, and hole location for burring - are selected to be optimized. The most effective condition of a forming quality for a hot-press-formed lower control arm is suggested. The simulation results are confirmed with experimental ones.

핫 포밍을 이용한 고강도 보론 첨가 강의 기계적 및 성형 특성 평가 (Mechanical and Forming Characteristics of High-Strength Boron-Alloyed Steel with Hot Forming)

  • 채명수;이기동;서영성;이경훈;김영석
    • 소성∙가공
    • /
    • 제18권3호
    • /
    • pp.236-244
    • /
    • 2009
  • In response to growing environmental and collision-safety concerns, the automotive industry has gradually used high-strength and ultla-high-strength steels to reduce the weight of automobiles. In order to overcome inherent process disadvantages of these materials such as poor formability and high springback at room temperature, hot forming has recently been developed and adopted to produce some important structural parts in automobiles. This method enables manufacturing of components with complex geometric shapes with minimal springback. In addition, a quenching process may enhance the material strength by more than two times. This paper investigates mechanical and forming characteristics of high-strength boron-alloyed steel with hot forming, in terms of hardness, microstructure, residual stress, and springback. In order to compare with experimental results, a finite element analysis of hot forming process coupled with phase transformation and heat transfer was carried out using DEFORM-3D V6.1 and also, to predict high temperature mechanical properties and flow curves for different phases, a material properties modeler, JMatPro was used.

TWB 보론강의 기계적 특성 및 성형성 (Mechanical Properties and Formability of TWB Boron Steel)

  • 남기우;황석환;김대용;이문용;이상문
    • 대한기계학회논문집A
    • /
    • 제36권10호
    • /
    • pp.1221-1226
    • /
    • 2012
  • 핫 스탬핑은 오스테나이트 변태 온도 이상에서 프레스 성형 후 급속히 냉각되는 고강도 부품을 제조하는 성형 방법이다. 매우 적은 양의 보론 성분을 가지고 있는 보론강은 핫 스탬핑에 사용되는 재료 중의 하나이다. 본 연구의 목적은 열처리 조건에 따르는 기계적 성질과 에릭슨 커핑 시험에 의하여 성형성을 조사하는 것이다. 다양한 온도에서 다이��칭은 대기 시간을 달리하여 실시하였다. 1173 K-0s에서 ��칭 후 TWB는 1203 MPa의 인장 강도를 얻었다. 이것은 모재 인장강도(1,522 MPA)의 79 %이다. 금형 온도(298, 523, 673 K)에 따른 보론강 TWB의 성형성은 차이가 크지 않았다. 그러나 성형 속도가 증가함에 따라 성형성이 감소하는 것을 확인할 수 있었다.

핫스탬핑용 보론 강판의 레이저 용접부에 대한 열처리 조건에 따른 특성 연구 (A Study on the Properties of Laser-Welded Boron Steel for Hot Stamping According to the Heat-Treatment Conditions)

  • 황석환;남기우
    • 대한기계학회논문집A
    • /
    • 제36권3호
    • /
    • pp.319-324
    • /
    • 2012
  • 이산화탄소에 대한 규제가 강화되면서 환경 보호를 위하여 차량의 경량화를 요구하고 있다. 이를 위하여 다른 재질, 두께 및 강도를 갖는 소재를 맞춤 블랭크로 제조하여 활용하는 TWB 기술과 오스테나이트 변태온도 이상으로 승온, 스탬핑 ��칭하는 핫스탬핑용 보론강을 이용한 열간 성형 기술을 접목함으로써 경량화 및 고안전성을 확보할 수 있다. 따라서 본 연구에서는 레이저 용접된 보론 강판의 열처리 온도를 달리하여 다이��칭 조건에 따른 기계적 특성을 조사하였다. 레이저 용접한 보론 강판을 다이 ��칭한 후 인장 시험한 결과, 최대인장강도 1454 MPa, 연신율은 6 %로 나타났으며, 이것은 용접하지 않은 모재 열처리재 인장강도, 1522 MPa의 95.5 %이다. 이 값은 핫스탬핑용 보론강 용접재의 실용적인 데이터로 활용될 수 있을 것이다.

핫스탬핑 공정조건에 따른 기계적 특성 (The Effect of Hot Stamping Operation Condition on the Mechanical Properties)

  • 김훈동;문만빈;이승하;윤경원;유지홍
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.317-320
    • /
    • 2008
  • The Hot Stamping process, which is the hot pressing of steel parts using cold dies. can utilize both case of shaping and high strength due to the hardening effect of rapid quenching during the pressing. We carried out experiments of quenching rate and tempering treatments at temperatures of $200^{\circ}C$ and $300^{\circ}C$ and different soaking times. Tn this study, the mechanical properties and microstructure of micro boron alloyed steels after heat treatments are compared.

  • PDF

STD61 강의 내열특성향상을 위한 표면경화에 관한 연구 (A Study in the Heat Resistance Properties of STD61 Steel using the Surface Hardening Method)

  • 이구현
    • 연구논문집
    • /
    • 통권26호
    • /
    • pp.121-132
    • /
    • 1996
  • The carburising surface modification treatment of the die steel has been used for improving wear resistance and heat cycle strength of the die and preventing a pitting on the surface because the carbides are forming in the matrix during carburising. Generally, the hot forging die was used after quenching-tempering treatment or nitriding after quenching-tempering treatment. The nitriding after carburising on the surface of a hot die steel and a wear resistance die steels was suggested by SOUCHARD, JACQUOT. and BUVRON. This surface modification treatment improved the adhesive and abrasive wear resistance and friction coefficient. The process was introduced to the forging die of stainless steel, titanium alloy steel, alloy and medium carbon steel and the physical properties of the die after the treatment were improved. The surface hardening treatment of the nitriding, the carburising, the boriding, and TD process were used to improved the life time of the forging die. Also, the coating process of PVD, CVD and PCVD were used and the hard chromium plating was occasionally used. Therefore, this study analyzed the effects of the carburising time and the conditions of nitriding on STD61 steel. The case depth, the surface hardness, the forming carbide size and shape during overcarburising process on the die steel were also examined.

  • PDF

열간 기계적 피어싱을 이용한 핫스탬핑 전단특성 연구 (Study on the Shear Characteristics by using the Hot Mechanical Piercing during the Hot Stamping Process)

  • 박계정;박재명;공제열;김지영;윤승채;현주식;정유동
    • 소성∙가공
    • /
    • 제32권2호
    • /
    • pp.81-86
    • /
    • 2023
  • The hot stamping process is widely used for high strength of vehicle parts, with heating 900 ℃ or higher in a furnace and in-die quenching to achieve strength above 1.5 GPa of the quenchable boron alloyed steel 22MnB5. First of all, the hot stamping process consisted of heating, forming, quenching and trimming. In the trimming process case, the laser method has been conventionally adopted. For laser trimming process, it has the problems pertaining to low productivity and high cost while the hot stamping process, accordingly the trimming process need to investigate the research for alternative method. In order to overcome these issues, many research groups have studied the mechanical trim solution on the hot stamped parts at high temperature. In this study, the mechanical piercing was performed during the hot stamping process at the high temperature for overcome the disadvantages of laser cutting. Also, the process parameters such as piercing time after die closing, clearances of between die and punch were controlled for obtaining the reasonable shear characteristics.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • 한국분말재료학회지
    • /
    • 제9권6호
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

원통형 보론강을 사용한 가열-급냉공정에서의 열변형 해석 (Thermo-mechanical Simulation of Boron Steel Cylinders during Heating and Rapid Cooling)

  • 서창희;권태하;강경필;최현열;김양수;김영석
    • 소성∙가공
    • /
    • 제23권8호
    • /
    • pp.475-481
    • /
    • 2014
  • Water quenching is one method of cooling after hot forming, which is presently being used for the manufacturing of automobile parts. The formed parts at room temperature are heated and then cooled rapidly in a water bath to produce high strength. The formed parts may undergo excessive thermal distortion during the water quench. In order to predict the distortion during water quenching, a coupled thermo-mechanical simulation is needed. In the current study, the simulation of heating and cooling of boron steel cylinders was performed. The material properties for the simulation were calculated from JMatPro, and the convective heat transfer coefficient was obtained from experimental tests. The results show that the thermal distortion and the residual stresses are well predicted by the coupled simulation.

핫스탬핑용 보론 강판의 열처리 조건에 따른 재질분석 및 점용접 특성 연구 (A Study on Spot-Welding Characteristics and Material Analysis of Boron Steel for Hot-Stamping under Different Heat-Treatment Conditions)

  • 제환일;손창석;남기우
    • 대한기계학회논문집A
    • /
    • 제35권4호
    • /
    • pp.383-391
    • /
    • 2011
  • 최근 차체 경량화를 위한 여러 가지 방법 가운데 고온에서 가공하여 성형성을 확보하고, 이후 열처리를 통하여 고강도를 가질 수 있는 프레스 열간 성형 및 핫스탬핑 기술이 각광을 받고 있으며, 이에 따라 핫스탬핑용 재료인 보론 첨가 강판의 수요도 늘어나고 있는 추세이다. 본 연구에서는 핫스탬핑용보론 첨가 강판의 우수한 경화능을 보이는 임계 최적 열처리 조건을 파악하고자, Al+Si 코팅이 된 보론강판을 각기 다른 온도로 열처리하여 수냉 조건에 따른 기계적 특성 및 조직을 관찰하였다. 또한, 이 결과를 토대로 선별된 기계적 특성이 우수한 보론강 시험편과 일반 냉연 강판인 SPRC 340과 SPRC 590 2종류의 상대재를 활용하여 특정 점용접 조건에서 용접을 실시하고, 보론강 및 상대재의 기계적 특성 변화에 따른 용접 후의 기계적 특성 및 조직, 그리고 코팅층 유무에 따른 특성 변화를 연구하였다.