• Title/Summary/Keyword: Hot Air Temperature Control

검색결과 168건 처리시간 0.041초

Dynamic simulation of a solar absorption cooling system (태양열을 이용한 흡수식 냉방기의 동특성 시뮬레이션)

  • 정시영;조광운
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제10권6호
    • /
    • pp.784-794
    • /
    • 1998
  • The present study has been directed at developing thermal models to investigate the dynamic behavior of a solar cooling system including an absorption chiller, solar collectors, a hot water storage tank, a fan coil unit, and the air-conditioned space. The operation of the system was simulated for 8 hours in two different operation modes. In the mode 1, the system operated without any capacity control.0 the mode 2, an auxiliary boiler supplied heat to the generator if hot water temperature became lower than a certain value. Moreover, the mass flow rate of hot water to the generator was controlled by comparing the instantaneous room air temperature with the design value. The variation of temperature and concentration in the system components and that of heat transfer rates in the system were obtained for both modes of operation. It was found that the room temperature was maintained near the desired value in the mode 2 by supplying auxiliary heat or controlling the mass flow rate of hot water, while the deviation of room temperature was quite great in the mode 2.

  • PDF

Performance characteristics of hot-gas bypass refrigerator with the variation of operation conditions (운전조건 변화에 따른 hot-gas 바이패스 냉동장치의 성능 특성)

  • Baek, Seung-Moon;Son, Chang-Hyo;Heo, Jeong-Ho;Choi, In-Soo;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권9호
    • /
    • pp.1021-1026
    • /
    • 2014
  • In this paper, among various systems applying hot-gas bypass control, outdoor temperature, outlet temperature of water cooler, superheating and subcooling degree, which are the factors affecting the performance of the system bypassing hot-gas to evaporator inlet were analyzed. The main results were summarized as following. Frist of all, performance of refrigeration system bypassing hot-gas to evaporator inlet was affected by outdoor temperature, outlet temperature of water cooler, superheating and sub cooling degree. Thus, providing basic planning date of refrigeration system obtained through optimization of variables is expectable. Thus, providing the basic design data of refrigeration system can be offered by performing the optimization of these variables. Also, the feasibility of this refrigeration system proposed in this paper was obtained by analyzing operating characteristics of the system bypassing hot-gas to evaporator inlet.

Temperature control of the Rework-system using fuzzy PID controller (퍼지 PID 제어기에 의한 리워크 시스템의 온도제어)

  • Oh, Kabsuk;Kang, Geuntaek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제15권10호
    • /
    • pp.6289-6295
    • /
    • 2014
  • Rework systems are the equipment used to install or remove semiconductor chips with BGA or SMD forms in printed circuit boards. The rework systems have hot air outlets. At the outlets, precise temperature control is needed to avoid heat shock. The aim of this paper was to suggest a new controller for temperature control at the hot air outlets. The suggested controller was a fuzzy PID controller. The fuzzy PID controllers were composed of TSK fuzzy rules and had outstanding ability for nonlinear systems control. This paper reports the design algorithm of fuzzy PID controllers, and the design process of the fuzzy PID controller for the temperature control of the outlets. Temperature control experiments were performed to verify the ability of the suggested controller. As a result, the RMS of the proposed method is 9.44 and the general method is 15.88. The experiments showed that the temperatures at the outlet using the suggested fuzzy PID controller followed the desired ones better than the commonly used PID controller.

Measurement and Simulation of Heating Energy for Apartments with District Heating (지역난방 아파트에 대한 난방에너지 실측 및 시뮬레이션)

  • Lee, Eun Ju;Lee, Doo Young;Hong, Hiki;Kim, Young Kyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제26권12호
    • /
    • pp.572-578
    • /
    • 2014
  • Heating energy was measured in an apartment housing unit with a district heating system, varying the kind of hot water distributors. Ondol coils passing through a living room raised the temperature of the room where the heating was turned off. Including this characteristic of Ondol heating into the modeling, we performed simulations and showed a verification by comparison with the results of measurements. As a result, a main flow control method, which changes hot water flow rate supplied to a housing unit according to the thermal load, can reduce the supplied flow rate and lower the return temperature, compared with a constant flow method. That can result in decreased heat loss in utility-pipe conduits even though the heating energy supplied is almost the same. An outdoor reset control that raises the temperature of the supplied hot water if the outdoor temperature falls has the effect of a quicker response in heating than the reduced flow rate and return temperature.

Temperature Control of Oil Cooler with Hot-gas Bypass (토출가스 바이패스제어에 의한 산업용 냉각기의 온도제어)

  • Byun, Jong-Yeong;Joo, Woo-Jin;Choi, Jun-Hyuk;Moon, Choon-Geun;Yoon, Jung-In;Jeong, Seok-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.961-966
    • /
    • 2009
  • This paper presents precise temperature control of oil outlet in an oil cooler with hot-gas bypass control as an industrial refrigerator. The control system was designed for obtaining precise temperature control performance even though abrupt disturbances based on flow rate control of hot-gas bypass. PID controller was adopted in feedback control system. We showed that the gain of PID could be easily determined by using gain-tuning methods without any numerical model. Through some experiments, excellent control performances such as overshoot within 1.7%, steady state temperature error within ${\pm}0.1^{\circ}C$ were established by a simple PI controller. We expect that the system can control the target temperature within error of $0.33^{\circ}C$ under abrupt disturbances.

  • PDF

Energy Saving Effects of Carbon Nano Heating Pipe for Heating of Greenhouse (탄소나노히팅파이프를 이용한 온실 난방에너지 절감효과)

  • Paek, Y.;Jeon, J.G.;Yun, N.K.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • 제13권3호
    • /
    • pp.107-111
    • /
    • 2011
  • This carbon nano heating system was consisted of power supply equipment, a carbon fiber and a stainless flexible hose. carbon nano heating system was manufactured by carbon fiber of a power capacity 30kw/h and light-oil hot air heater in control plot was the heating capacity 30,000kcal/h, As the result, Temperature difference due to carbon nano heating system and hot air heater in greenhouse showed that air temperature at experimental greenhouse, comparison greenhouse were $14.8^{\circ}C$, $13.4^{\circ}C$ respectively. It was found that carbon nano heating system and light-oil hot air heater heating cost were 1,095,740won, 2,683,628won. therefore as heating cost saving 60%. Yield of tomatoes cultured in greenhouse using carbon nano heating pipe was 4% inclease. Economic analysis comparison between the carbon nano heating pipe and the hot air heater in greenhouse were 41% respectively.

Analysis on the Uniformity of Temperature and Humidity According to Environment Control in Tomato Greenhouses (토마토 재배 온실의 환경조절에 따른 온습도 균일도 분석)

  • Nam, Sang-Woon;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • 제18권3호
    • /
    • pp.215-224
    • /
    • 2009
  • A survey on the actual state of heating, cooling, ventilation, and air-flow and experimental measurement of temperature and humidity distribution in tomato greenhouse were performed to provide fundamental data required in the development of air-flow control technology. In single-span plastic houses, which account for most of 136 tomato greenhouses surveyed, roof windows, ventilation and air-flow fans were installed in a low rate, and installation specs of those facilities showed a very large deviation. There were no farms installed greenhouse cooling facilities. In the hot air heating system, which account for most of heating type, installation specs of hot air duct showed also a large deviation. The exhaust air temperature and wind speed in hot air duct also were measured to have a big difference depending on the distance from the heater. We are using the maximum difference as indicator to determine whether temperature distribution is uniform. However if the temperature slope is not identical in greenhouse, it can't represent the uniformity. We analyzed relation between the maximum difference and the uniformity of temperature and humidity distribution. The uniformity was calculated using the mean and standard deviation of data from 12 measuring points. They showed high correlation but were represented differently by linear in the daytime and quadratic in the nighttime. It could see that the uniformity of temperature and humidity distribution was much different according to greenhouse type and heating method. The installation guidelines for ventilation and air-flow fan, the spread of greenhouse cooling technology for year-round stable production, and improvement of air duct and heating system, etc. are needed.

A Simulation of Temperature Control of Greenhouse with Hot-Water Heating System (온수난방시스템 온실의 온도제어 시뮬레이션)

  • 정태상;하종규;민영봉
    • Journal of Bio-Environment Control
    • /
    • 제8권3호
    • /
    • pp.152-163
    • /
    • 1999
  • It is required to analyze the controlled response of air temperature in greenhouse according to control techniques for precise control. In this study, a mathematical model was established for air heating of greenhouse with hot-water heating system The parameters of the model were decided by regression analysis using reference data measured at the greenhouse being heated In the simulation for the digital control of air temperature in the greenhouse, the mathematical model to evaluate the control performances was used. Tested control methods were ON-OFF contpol, p control, rl control and PID control. The mathematical model represented by inside air temperature ( T$_{i}$), hot-water temperature (T$_{w}$) in heating pipe and outside air temperature (T$_{o}$) was expressed as a following discrete time equation ; T$_{i}$($textsc{k}$+1)= 0.851.T$_{i}$($textsc{k}$)+0.055.T$_{w}$($textsc{k}$)+0.094.T$_{o}$($textsc{k}$) Control simulations for various control methods showed the settling time, the overshoot and the steady state nor as follows; infinite time, 3.5$0^{\circ}C$, 3.5$0^{\circ}C$ for ON-OFF control : 30min 2.37$^{\circ}C$, 0.51$^{\circ}C$ for P control; 21min, 0.0$0^{\circ}C$, 0.23$^{\circ}C$ for PI control; 18min 0.0$0^{\circ}C$, 0.23$^{\circ}C$ for PID control, respectively. PI and PID controls appeared to be optimal control methods. There was no effect of differential gain on the heating process but much effect of integral gain on it.on it.

  • PDF

Comparison of System Performances of Hot-gas Bypass and Compressor Variable Speed Control of Water Coolers for Machine Tools (핫가스 바이패스 및 압축기 가변속 제어에 의한 공작기계용 수냉각기의 성능 비교)

  • Jeong, Seok-Kwon;Lee, Dan-Bi;Yoon, Jung-In
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2012
  • Recently, the needs of system performances such as working speed and processing accuracy in machine tools have been increased. Especially, the speed increment generates harmful heat at both moving part of the machine tools and handicrafts. The heat is a main drawback to progress accuracy of the processing. Hence, a cooler system to control temperature is inevitable for the machine tools. In general, two representative control schemes, hot-gas bypass and variable speed control of a compressor, have been adopted in the water cooler system. In this paper, comparisons of system performances according to the control schemes in a cooler for machine tools were conducted in detail. Each proportional-integral feedback controller for the two different control systems is designed. The system performances, especially the temperature control accuracy and coefficient of performance which is a criterion of energy saving, were mainly analyzed through various experiments using 1RT water cooler system with different two types of control scheme. These evaluations will provide useful information to choose suitable water cooler system for the engineers who design controllers of the cooler system for machine tools.

Hot Air Drying Characteristics of Oak Mushroom (Lentinus edodes) by Microcomputer Control System (마이크로 컴퓨터 제어장치를 이용한 표고버섯의 열풍건조 특성)

  • Park, Jae-Deok;Kang, Hyun-Ah;Chang, Kyu-Seob
    • Korean Journal of Food Science and Technology
    • /
    • 제28권1호
    • /
    • pp.72-76
    • /
    • 1996
  • Hot air drying of Lentinus edodes was studied using the microcomputer drying system that can control the drying parameters such as air temperature, relative humidity and a weight-loss of water. The physico-chemical properties of dried products were measured in order to investigate the drying characteristics. The mechanism of water movement during air drying of Lentinus edodes closely followed the Page model. That was $M-M_c/M_0-M_c\;=\;\exp\;(-0.275t^{1.154})$ at $50^{\circ}C$ and 20% RH. The free amino acids increased with increased relative humidity. The color and browning degree increased with increased air temperature and relative humidity. The rehydration rate was low when the air temperature and relative humidity were high.

  • PDF