• 제목/요약/키워드: Host-pathogen

검색결과 417건 처리시간 0.021초

배추 무사마귀병의 발생상황과 병원균(Plasmodiophora brassicae)의 병원성 및 배추품종의 병저항성 (Incidence, Pathogenicity of Clubroot Fungus(Plasmodiophora brassicae) and Varietal Resistance in Chinese Cabbage)

  • 김두욱;오정행
    • 한국식물병리학회지
    • /
    • 제13권2호
    • /
    • pp.95-99
    • /
    • 1997
  • To obtain a basic information of breeding for resistance to clubroot in Chinese cabbage, disease incidence, pathogenicity, and varietal response to the pathogen were studied. Incidence of clubroot was observed at 3 districts in Gyeonggi-Do, 2 districts in Kangwon-Do, and 1 district each in Gyeongnam, Geongbuk and Jeonbuk, respectively. Disease infection rate and diseased ara were most severe in northern part of Gyeonggi-Do. The isolates of clubroot collected from 8 different districts were not different in their virulence one another in view of their infection rate and disease severity in Chinese cabbage. The clubroot fungus had a wide host range for the cruciferous vegetables. Disease severity was high in rape, turnip and mustard, moderate in Chinese cabbage and broccoli, and low in kale and cauliflower. All of Korean hybrids of Chinese cabbage tested were highly susceptible to clubroot, but Japanese varieties were resistant to the highly pathogenic isolate (EJ-93) which was isolated from the Chinese cabbage in Korea. The hybrid(F1) between clubroot resistant line(930WG) and the susceptible line(332MS) showed completely resistant reaction, which indicated that clubroot resistance was governed by a dominant gene.

  • PDF

Global Approaches to Identify Genes Involved during Infection Structure Formation in Rice Blast Fungus, Magnaporthe grisea

  • Park, Woo-Bong
    • The Plant Pathology Journal
    • /
    • 제19권1호
    • /
    • pp.34-42
    • /
    • 2003
  • The ascomycete Magnaporthe grisea is a pathogen of rice blast and is known to form specialized infection structures called appressoria for successful infection into host cells. To understand the molecular mechanism underlying infection process, appressorium-related genes were identified through global approaches including EST sequencing, differential hybridization, and sup-pression subtractive hybridization. EST database was generated on >2,000 cDNA clones randomly selected from appressorium stage cDNA library. Large number of ESTs showed homology to known proteins possibly involved in infection-related cellular development (attachment, germination, appressorium formation, and colonization) of rice blast fungus. The 1051 ESTs showing significant homology to known genes were assigned to 11 functional categories. Differential hybridization and suppression subtractive hybridization were applied to identify genes showing an appressorium stage specific expression pattern. A number of genes were selected as up-regulated during appressorium formation compared with the vegetative growing stage. Clones from various cDNA libraries constructed in different developmental stages were arrayed on slide glass for further expression profiling study. functional characterization of genes identified from these global approaches may lead to a better understand-ing of the infection process of this devastating plant disease, and the development of novel ways to protect host plant.

Plant-derived Antibacterial Metabolites Suppressing Tomato Bacterial Wilt Caused by Ralstonia solanacearum

  • Vu, Thuy Thu;Choi, Gyung Ja;Kim, Jin-Cheol
    • 식물병연구
    • /
    • 제23권2호
    • /
    • pp.89-98
    • /
    • 2017
  • Ralstonia solanacearum species complex (RSSC) causes bacterial wilt, and it is one of the most important soil-borne plant pathogenic bacteria. RSSC has a large host range of more than 50 botanical families, which represent more than 200 plant species, including tomato. It is difficult to control bacterial wilt due to following reasons: the bacterial wilt pathogen can grow inside the plant tissue, and it can also survive in soil for a long period; moreover, it has a wide host range and biological diversity. In most previous studies, scientists have focused on developing biological control agents, such as antagonistic microorganisms and botanical materials. However, biocontrol attempts are not successful. Plant-derived metabolites and extracts have been promising candidates to environmentally friendly control bacterial wilt diseases. Therefore, we review the plant extracts, essential oils, and secondary metabolites that show potent in vivo antibacterial activities (in potted plants or in field) against tomato bacterial wilt, which is caused by RSSC.

Isopod Parasite Induced Secondary Microbial Infection in Marine Food Fishes

  • Ravichandran, S;Sivasubramanian, K;Parasuraman, P;Rajan, D. Karthick;kumar, G. Ramesh
    • 한국어병학회지
    • /
    • 제29권1호
    • /
    • pp.1-5
    • /
    • 2016
  • Isopods are parasitic crustaceans that pose serious threat to fisheries. Several studies have tried to explore the host-pathogen relationship between marine fishes and isopods. The present study aims to understanding the secondary infections in marine fishes pertaining to isopods. To assess the secondary infection in infected fishes, parasite infested and healthy tissues of fishes were collected. The samples were subjected to standard microbiological procedure to identify the presence of pathogenic bacteria and fungi. Our results showed the branchial region had the higher microbial load of non-sporulating cenocytic fungi in infected fishes. Moreover, fungal strains isolated from the parasitic lesion confirmed that the parasitation and body lesion facilitates the entry of several pathogenic microbes at the damaged host tissue. More over the immune regulation of fish fights back by producing minute cysts, trying to encapsulate the growing fungus. But this may eventually lead to systemic infestation and death of the fish.

hpvPDB: An Online Proteome Reserve for Human Papillomavirus

  • Kumar, Satish;Jena, Lingaraja;Daf, Sangeeta;Mohod, Kanchan;Goyal, Peyush;Varma, Ashok K.
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.289-291
    • /
    • 2013
  • Human papillomavirus (HPV) infection is the leading cause of cancer mortality among women worldwide. The molecular understanding of HPV proteins has significant connotation for understanding their intrusion in the host and designing novel protein vaccines and anti-viral agents, etc. Genomic, proteomic, structural, and disease-related information on HPV is available on the web; yet, with trivial annotations and more so, it is not well customized for data analysis, host-pathogen interaction, strain-disease association, drug designing, and sequence analysis, etc. We attempted to design an online reserve with comprehensive information on HPV for the end users desiring the same. The Human Papillomavirus Proteome Database (hpvPDB) domiciles proteomic and genomic information on 150 HPV strains sequenced to date. Simultaneous easy expandability and retrieval of the strain-specific data, with a provision for sequence analysis and exploration potential of predicted structures, and easy access for curation and annotation through a range of search options at one platform are a few of its important features. Affluent information in this reserve could be of help for researchers involved in structural virology, cancer research, drug discovery, and vaccine design.

Pathophysiology of enteropathogenic Escherichia coli during a host infection

  • Lee, Jun Bong;Kim, Se Kye;Yoon, Jang Won
    • Journal of Veterinary Science
    • /
    • 제23권2호
    • /
    • pp.28.1-28.18
    • /
    • 2022
  • Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhea in developing countries. However, sporadic outbreaks caused by this microorganism in developed countries are frequently reported recently. As an important zoonotic pathogen, EPEC is being monitored annually in several countries. Hallmark of EPEC infection is formation of attaching and effacing (A/E) lesions on the small intestine. To establish A/E lesions during a gastrointestinal tract (GIT) infeciton, EPEC must thrive in diverse GIT environments. A variety of stress responses by EPEC have been reported. These responses play significant roles in helping E. coli pass through GIT environments and establishing E. coli infection. Stringent response is one of those responses. It is mediated by guanosine tetraphosphate. Interestingly, previous studies have demonstrated that stringent response is a universal virulence regulatory mechanism present in many bacterial pathogens including EPEC. However, biological signficance of a bacterial stringent response in both EPEC and its interaction with the host during a GIT infection is unclear. It needs to be elucidated to broaden our insight to EPEC pathogenesis. In this review, diverse responses, including stringent response, of EPEC during a GIT infection are discussed to provide a new insight into EPEC pathophysiology in the GIT.

Complete genome sequence of Pediococcus acidilactici CACC 537 isolated from canine

  • Jung-Ae Kim;Hyun-Jun Jang;Dae-Hyuk Kim;Youn Kyoung Son;Yangseon Kim
    • Journal of Animal Science and Technology
    • /
    • 제65권5호
    • /
    • pp.1105-1109
    • /
    • 2023
  • Pedi coccus acidilactici CACC 537 was isolated from canine feces and reported to have probiotic properties. We aimed to characterize the potential probiotic properties of this strain by functional genomic analysis. Complete genome sequencing of P. acidilactici CACC 537 was performed using a PacBio RSII and Illumina platform, and contained one circular chromosome (2.0 Mb) with a 42% G + C content. The sequences were annotation revealed 1,897 protein-coding sequences, 15 rRNAs, and 56 tRNAs. It was determined that P. acidilactici CACC 537 genome carries genes known to be involved in the immune system, defense mechanisms, restriction-modification (R-M), and the CRISPR system. CACC 537 was shown to be beneficial in preventing pathogen infection during the fermentation process, help host immunity, and maintain intestinal health. These results provide for a comprehensive understanding of P. acidilactici and the development of industrial probiotic feed additives that can help improve host immunity and intestinal health.

Microbiome Analysis Revealed Acholeplasma as a Possible Factor Influencing the Susceptibility to Bacterial Leaf Blight Disease of Two Domestic Rice Cultivars in Vietnam

  • Thu Thi Hieu Nguyen;Cristina Bez;Iris Bertani;Minh Hong Nguyen;Thao Kim Nu Nguyen;Vittorio Venturi;Hang Thuy Dinh
    • The Plant Pathology Journal
    • /
    • 제40권2호
    • /
    • pp.225-232
    • /
    • 2024
  • The microbiomes of two important rice cultivars in Vietnam which differ by their susceptibility to the bacterial leaf blight (BLB) disease were analyzed through 16S rRNA amplicon technology. A higher number of operational taxonomic units and alpha-diversity indices were shown in the BLB-resistant LA cultivar than in the BLB-susceptible TB cultivar. The BLB pathogen Xanthomonas was scantly found (0.003%) in the LA cultivar, whereas was in a significantly higher ratio in the TB cultivar (1.82%), reflecting the susceptibility to BLB of these cultivars. Of special interest was the genus Acholeplasma presented in the BLB-resistant LA cultivar at a high relative abundance (22.32%), however, was minor in the BLB-sensitive TB cultivar (0.09%), raising a question about its roles in controlling the Xanthomonas low in the LA cultivar. It is proposed that Acholeplasma once entered the host plant would hamper other phytopathogens, i.e. Xanthomonas, by yet unknown mechanisms, of which the triggering of the host plants to produce secondary metabolites against pathogens could be a testable hypothesis.

Molecular screening of Feline bocaviruses (FBoVs) from captured wild felids in Korea

  • Yong-Gu Yeo;Jong-Min Kim;Hye-Ryung Kim;Jonghyun Park;Jung-Hoon Kwon;Oh-Deog Kwon;Choi-Kyu Park
    • 한국동물위생학회지
    • /
    • 제47권1호
    • /
    • pp.41-48
    • /
    • 2024
  • Feline bocavirus (FBoV) is considered an emerging pathogen recently identified in domestic cats worldwide. To date, three species of FBoVs (FBoV-1, FBoV-2, and FBoV-3) have been reported, but there are no reports identifying FBoVs in Korea. In this study, we detected novel FBoVs for the first time in Korea in captive wild felids (four European lynx and a lion) kept at Seoul Zoo. In FBoV-positive fecal samples, not only singular infections but also dual or triple infections with three different species of FBoVs were confirmed, suggesting that three species of FBoVs are already introduced and co-circulated in susceptible host animals in Korea. These results will help expand our understanding of the geographical distribution and host susceptibility of novel FBoVs. Further studies are necessary to determine the infection status of FBoVs in domestic cats and the genetic characteristics of the viruses circulating in Korea.

The Role of Plasmacytoid Dendritic Cells in Gut Health

  • Hye-Yeon Won;Ju-Young Lee;Dahye Ryu;Hyung-Taek Kim;Sun-Young Chang
    • IMMUNE NETWORK
    • /
    • 제19권1호
    • /
    • pp.6.1-6.14
    • /
    • 2019
  • Plasmacytoid dendritic cells (pDCs) are a unique subset of cells with different functional characteristics compared to classical dendritic cells. The pDCs are critical for the production of type I IFN in response to microbial and self-nucleic acids. They have an important role for host defense against viral pathogen infections. In addition, pDCs have been well studied as a critical player for breaking tolerance to self-nucleic acids that induce autoimmune disorders such as systemic lupus erythematosus. However, pDCs have an immunoregulatory role in inducing the immune tolerance by generating Tregs and various regulatory mechanisms in mucosal tissues. Here, we summarize the recent studies of pDCs that focused on the functional characteristics of gut pDCs, including interactions with other immune cells in the gut. Furthermore, the dynamic role of gut pDCs will be investigated with respect to disease status including gut infection, inflammatory bowel disease, and cancers.