• Title/Summary/Keyword: Host molecule

Search Result 99, Processing Time 0.03 seconds

Fabrication and Characterization of High Performance Green OLEDs using $Alq_3$-C545T Systems ($Alq_3$-C545T시스템을 이용한 고성능 녹색 유기발광다이오드의 제작과 특성 평가)

  • Jang Ji-Geun;Kim Hee-Won;Shin Se-Jin;Kang Eui-Jung;Ahn Jong-Myong;Lim Yong-Gyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.51-55
    • /
    • 2006
  • The green emitting high performance OLEDs using the $Alq_3$-C545T fluorescent system have been fabricated and characterized. In the device fabrication, 2-TNATA [4,4',4'-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as a hole injection material and NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as a hole transport material were deposited on the ITO(indium thin oxide)/glass substrate by vacuum evaporation. And then, green color emission layer was deposited using $Alq_3$ as a host material and C-545T[10-(2-benzothiazolyl)-1,1,7,7- tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]/benzopyrano[6,7,8-ij]-quinolizin-11-one] as a dopant. Finally, small molecule OLEDs with structure of ITO/2-TNATA/NPB/$Alq_3$:C545T/$Alq_3$/LiF/Al were obtained by in-situ deposition of $Alq_3$, LiF and Al as the electron transport material, electron injection material and cathode, respectively. Green OLEDs fabricated in our experiments showed the color coordinate of CIE(0.29, 0.65) and the maximum power efficiency of 7.3 lm/W at 12 V with the peak emission wavelength of 521 nm.

  • PDF

Viroid-the Smallest Plant Pathogen (바이로이드-가장 작은 식물병원체)

  • Lee Jai Youl
    • Korean Journal Plant Pathology
    • /
    • v.1 no.3
    • /
    • pp.199-206
    • /
    • 1985
  • Viroids are the smallest. well-characterized infectious agents presently known. and so far viroids have been found only in higher plants. The structures of viroid-molecules are single-stranded, covalently closed circular RNA molecules with a range of 240 to 380 nucleotides according to the various viroids. Viroids are remarkable not only as a new category of pathogen, which cause economically important diseases, but also as an excellent model system for biochemical and biophysical investigations because of their small size, relative stability and their self-replication. Four different patato spindle tuber viroid isolates, which express the different symptoms on the same host plant exchange only 2 to 6 nucleotides in the total number of 359 nucleotides, but now the mechanism of viroid pathogenicity is not explained fully. Viroid-melecules are replicated without any special viroid-associated proteins, and during the process of viroid replication oligomeric viroid-associated RNAs are detected at nuclei of viroid infected leaf tissue. The mechanism of viroid replication can now be illustrated according to a possible explanation of rolling-circle system. Although the rapid progress have been made in elucidation of the biochemical and biophysical properties of PSTV and other viroids, the mechanism of viroid replication and pathogenicity is less known and is still a matter of speculation. When these problems can be sufficiently explained, the viroid molecule could play an important role as an available vector in plant genetic engineering.

  • PDF

Reversine, Cell Dedifferentiation and Transdifferentiation (Reversine과 세포의 역분화 및 교차분화)

  • Moon, Yang Soo
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.394-401
    • /
    • 2020
  • As embryonic stem cells become pluripotent, they may cause tumor development when injected into a host. Therefore, researchers are focusing heavily on the therapeutic potential of tissue-specific stem cells (adult stem cells) without resultant tumor formation. Adult stem cells can proliferate for a limited number of generations and are restricted to certain cell types (multipotent). Mature tissue cell types in mammals cannot be intrinsically dedifferentiated or transdifferentiated to adult stem cells. Hence, the technology of induced pluripotent stem cells (iPSCs) for reprogramming adult somatic cells was introduced in 2006, ushering in a new era in adult stem cell research. Although iPSCs have been widely used in the field, the approach has several limitations: instability of the reprogramming process, risk of incomplete reprogramming, and exposure to transgenes integrated into the cell genome. Two years before the introduction of the iPSC technique, the synthetic small molecule 2,6-disubstituted purine, called reversine, was introduced. Reversine can induce the dedifferentiation of committed cells into multipotent progenitor-type cells by reprogramming and converting adult cells to other cell types under appropriate stimuli. Thus, it can be used as a chemically induced multipotent cell agent to overcome the limitations of iPSCs. Also, as an alternative therapeutic approach for treating obesity, it can be used to generate beige cells by browning white adipocytes. While reversine has the potential to act as an anti-cancer agent, this review focuses on its role in differentiation, dedifferentiation, and transdifferentiation in somatic cells.

Raman Spectroscopy and Molecular Modeling Study on the CH4 and SF6 Mixture Gas Hydrate Growth Behavior (라만 분광학과 분자모델링을 이용한 메탄 및 육불화황 혼합 가스 하이드레이트 성장 거동 연구)

  • Lim, Jun-Heok;Lee, Ju Dong;Park, Sung Soo;Eom, Ki Heon;Won, Yong Sun
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.476-480
    • /
    • 2013
  • The growth behavior of $CH_4$ and $SF_6$ mixture gas hydrate has been investigated by a combined approach of Raman spectroscopy and molecular modeling. Raman spectroscopy results presented that when $CH_4$ is used only, $CH_4$ guest molecule is inserted first into the large cavity of the host structure built by $H_2O$ molecules and then into the small cavity to stabilize the whole gas hydrate structure. In the other hand, when $SF_6$ is mixed together, $SF_6$ is favored over (or competing with) $CH_4$ in being inserted into the large cavity and the small cavity still prefers $CH_4$ insertion. The calculations of binding energies clearly supported this. While $SF_6$ has a binding energy of -26.9 kcal/mol a little lower than -24.2 kcal/mol of $CH_4$ in the large cavity, $SF_6$ and $CH_4$ has 1.2 kcal/mol and -22.0 kcal/mol, respectively, in the small cavity. It indicates that the sizable $SF_6$ is not preferred in the small cavity but has a relative energetic advantage over $CH_4$ in the large cavity.

Invitro and Virtual Screening of Bioactive Molecule from Mycelium of Trichoderma atroviride Inhibit the UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine Deacetylases (LpxC) for Treatment of Bacterial Infection

  • Saravanakumar, Kandasamy;Park, Cheol-Ho;Wang, Myeong-Hyeon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.67-67
    • /
    • 2018
  • Trichoderma species are a rich source of metabolites, but less known for biomedical potential. This work deals with antibacterial and antioxidant potentials of intracellular non-cytotoxic metabolites, extracted from Trichoderma atroviride (KNUP001). A total of 53 fractions was collected by column chromatography and tested for cytotoxicity by MTT assay. Only one fraction (F41) was found to be non-toxic to Vero cells with $95.4{\pm}0.61%$ of survival. The F41 was then subjected to chemical analysis, antibacterial and antioxidant assays. The F41 at $500{\mu}g.ml^{-1}$ showed the total antioxidant of $48.70{\pm}2.90%$, DPPH radical scavenging activity of $37.25{\pm}2.25$, nitric oxide (NO) radical scavenging activity of $54.55{\pm}1.95$ and $H_2O_2$ radical scavenging activity of $43.75{\pm}3.21$. The F41 at $25{\mu}g.ml^{-1}$ displayed antibacterial activity against E. coli ($14.25{\pm}0.2mm$), P. mirabilis ($10.4{\pm}0.6mm$), S. dysenteriae ($18.6{\pm}03mm$), S. paratyphi A ($14.1{\pm}1.1mm$), E. aerogenes ($5.6{\pm}0.4mm$) and S. marcescens ($14.25{\pm}0.2mm$). GC-MS analysis revealed the dominant presence of oleic acid C 18.1 (63.18%), n-hexadecanoic acid (6.17%), and ethyl oleate (4.93%) and potent molecules such as 8-[(2E)-2-(3-hydroxybenzylidene)hydrazinyl]-1,3,7-trimethyl-3,7-dihydro-1H-purine-2,6-dione, 2-(Dimethylamino)ethyl (1Z)-N-hydroxy-2-(4-morpholinyl)-2-oxoethanimidothioate, Fluorene in the F41, and virtual study revealed that these molecules are likely responsible for the antibacterial activities of F41. Hence, further investigation deserves on purification and characterization of the active metabolites from T. atroviride strain KNUP001 towards developing molecular leads to effective antibacterial drugs, and non-toxic to host cells.

  • PDF

Exocyclic GpC DNA methyltransferase from Celeribacter marinus IMCC12053 (Celeribacter marinus IMCC12053의 외향고리 GpC DNA 메틸트랜스퍼라아제)

  • Kim, Junghee;Oh, Hyun-Myung
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • DNA methylation is involved in diverse processes in bacteria, including maintenance of genome integrity and regulation of gene expression. CcrM, the DNA methyltransferase conserved in Alphaproteobacterial species, carries out $N^6$-adenine or $N^4$-cytosine methyltransferase activities using S-adenosyl methionine as a co-substrate. Celeribacter marinus IMCC12053 from the Alphaproteobacterial group was isolated from a marine environment. Single molecule real-time sequencing method (SMRT) was used to detect the methylation patterns of C. marinus IMCC12053. Gibbs motif sampler program was used to observe the conversion of adenosine of 5'-GANTC-3' to $N^6$-methyladenosine and conversion of $N^4$-cytosine of 5'-GpC-3' to $N^4$-methylcytosine. Exocyclic DNA methyltransferase from the genome of strain IMCC12053 was chosen using phylogenetic analysis and $N^4$-cytosine methyltransferase was cloned. IPTG inducer was used to confirm the methylation activity of DNA methylase, and cloned into a pQE30 vector using dam-/dcm- E. coli as the expression host. The genomic DNA and the plasmid carrying methylase-encoding sequences were extracted and cleaved with restriction enzymes that were sensitive to methylation, to confirm the methylation activity. These methylases protected the restriction enzyme site once IPTG-induced methylases methylated the chromosome and plasmid, harboring the DNA methylase. In this study, cloned exocyclic DNA methylases were investigated for potential use as a novel type of GpC methylase for molecular biology and epigenetics.

Site-specific Dye-labeling of the Bacterial Cell Surface by Bioconjugation and Self-assembly (바이오접합과 자가결합을 이용한 박테리아 세포막의 위치 특이적 형광 표지)

  • Yang, I Ji;Lim, Sung In
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.398-406
    • /
    • 2022
  • The outer membrane of Gram-negative bacteria is the outermost layer of cellular environment in which numerous biophysical and biochemical processes are in action sustaining viability. Advances in cell engineering enable modification of bacterial genetic information that subsequently alters membrane physiology to adapt bacteria to specific purposes. Surface display of a functional molecule on the outer membranes is one of strategies that directs host cells to respond to a specific extracellular matter or stimulus. While intracellular expression of a functional peptide or protein fused to a membrane-anchoring motif is commonly practiced for surface display, the method is not readily applicable to exogenous or large proteins inexpressible in bacteria. Chemical conjugation at reactive groups naturally occurring on the membrane might be an alternative, but often compromises fitness due to non-specific modification of essential components. Herein, we demonstrated two distinct approaches that enable site-specific decoration of the outer membrane with a fluorescent agent in Escherichia coli. An unnatural amino acid genetically incorporated in a surface-exposed peptide could act as a chemoselective handle for bioorthogonal dye labeling. A surface-displayed α-helical domain originating from a part of a selected heterodimeric coiled-coil complex could recruit and anchor a green fluorescent protein tagged with a complementary α-helical domain to the membrane surface in a site- and hetero-specific manner. These methods hold a promise as on-demand tools to confer new functionalities on the bacterial membranes.

The Effect of Hydrogen Peroxide on Inducible Nitric Oxide Synthase Expression in Murine Macrophage RA W264.7 Cells (Murine macrophage RAW264.7에서 과산화수소가 유발형 산화질소 합성효소의 발현에 미치는 영향)

  • Ahn, Joong-Hyun;Song, Jeong-Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.2
    • /
    • pp.172-183
    • /
    • 1999
  • Background: Nitric oxide is a short-lived effector molecule derived from L-arginine by the nitric oxide synthase(NOS). Nitric oxide plays a role in a number of physiologic and pathophysiologic functions including host defense, edema formation, and regulation of smooth muscle tone. Some kinds of cells including macrophage are known to produce large quantities of nitric oxide in response to inflammatory stimuli such as interleukin-$1\beta$(IL-$1\beta$), tumor necrosis factor-$\alpha$(TNF-$\alpha$), interferon-$\gamma$(IFN-$\gamma$) and lipopolysaccharide(LPS). Reactive oxygen species are also known to be important in the pathogenesis of acute cell and tissue injury such as acute lung injury model Methods: Using the RA W264.7 cells, we have examined the ability of oxidant hydrogen peroxide($H_2O_2$) to stimulate nitric oxide production and inducible NOS mRNA expression. Also, we have examined the effects of NOS inhibitors and antioxidants on $H_2O_2$ induced nitric oxide production. Results: Stimulation of RAW264.7 cells with combinations of 100 ng/ml IL-$1\beta$, 100 ng/ml TNF-$\alpha$, and 100 U/ml IFN-$\gamma$ or 100 U/ml IFN-$\gamma$ and $1{\mu}g/ml$ LPS induced the synthesis of nitric oxide as measured by the oxidation products nitrite($NO_2^-$) and nitrate($NO_3^-$). Addition of $250 {\mu}M-2$ mM $H_2O_2$ to the cytokines significantly augmented the synthesis of $NO_2^-$ and $NO_3^-$(p<0.05). When cells were incubated with increasing concentrations of $H_2O_2$ in the presence of IL-$1\beta$, TNF-$\alpha$ and IFN-$\gamma$ at constant level, the synthesis of $NO_2^-$ and $NO_3^-$ was dose-dependently increased(p<0.05). $N^G$-nitro-L-arginine methyl ester(L-NAME), dose dependently, significantly inhibited the formation of $NO_2^-$ and $NO_3^-$ in cells stimulated with LPS, IFN-$\gamma$ and $H_2O_2$ at constant level(p<0.05). Catalase significantly inhibited the $H_2O_2$-induced augmentation of cytokine-induced $NO_2^-$ and $NO_3^-$ formation(p<0.05). But, boiled catalase did not produce a significant inhibition in comparison with the native enzyme. Another antioxidant 2-mercaptoethanol and orthophenanthroline dose-dependently suppressed $NO_2^-$ and $NO_3^-$ synthesis(p<0.05). Northern blotting demonstrated that H:02 synergistically stimulated the cytokine-induced iNOS mRNA expression in RA W264.7. Conclusion: These results suggest that $H_2O_2$ contributes to inflammatory process by augmenting the iNOS expression and nitric oxide synthesis induced by cytokines.

  • PDF

The Suppressive Effects of Integrin Antibodies on the Infection of Hantaan Virus in Fibroblasts (한탄바이러스의 섬유아세포 감염에 대한 Integrin 항체의 억제 효과)

  • Park, Ho-Sun;Kim, Ki-Duk;Kim, Sung-Kwang
    • Journal of Yeungnam Medical Science
    • /
    • v.15 no.1
    • /
    • pp.55-66
    • /
    • 1998
  • Pathophysiological mechanism of hemorrhagic fever with renal syndrome (HFRS) is not fully understood. Major clinical findings of HFRS patients are widespread hemorrhage, acute renal failure and shock. Basic lesion is vascular injury with microvascular hemorrhage and relatively little inflammation. According to autopsy findings, renal medulla shows focal hemorrhage, tubular necrosis and interstitial mononuclear infiltrates. The predominant cell type in the renal and pulmonary interstitium is a fibroblast and it participates in the healing process at the injury site by secreting a large amount of extracellular matrix proteins. Cultured human lung fibroblasts and Mongolian gerbil fibroblasts were known to be good host cells for the hantaan virus. It is possible that not only the endothelial cell but also the fibroblast is a target of Hantaan virus and the fibroblast might be involved in the pathogenesis and the healing process in HFRS. Integrins are adhesion molecules, and act as receptors for many extracellular matrix proteins. Recently, there are many reports that cell surface integrins influence on some viral infections or reversely viruses influence on the expression of integrins. The ${\alpha}_5{\beta}_1$ integrin is a major receptor for the fibronectin which is an important extracellular matrix protein secreted by fibroblasts. In this study, the role of ${\alpha}_5{\beta}_1$ integrin in the infection of Hantaan virus was examined by using anti-${\alpha}_5{\beta}_1$, integrin, anti-${\alpha}_5$ integrin and anti-${\beta}_1$, integrin antibodies in chicken embryo fibroblasts (CEF) and Mongolian gerbil fibroblasts(MGF). The treatment of anti-${\alpha}_5{\beta}_1$, integrin antibody in CEF reduced the virion titers 26.8% and the amount of nucleocapsid N protein 32.6% when compared with control CEF. When MGF were treated with anti-${\alpha}_5$, anti-${\beta}_1$ and anti-${\alpha}_5{\beta}_1$ integrin antibodies, virion titers were reduced by 26.5%, 29.4% and 28.7% and the amount of nucleocapsid N protein were reduced by 65.2%, 59.7% and 72.6%. These results suggested that ${\alpha}_5{\beta}_1$ integrin might act as a receptor for the Hantaan virus or blocking of ${\alpha}_5{\beta}_1$ integrin influences on the viral replication in CEF and MGF. It is also possible that the blocking of only one subunit of integrin represents similar results in that of whole molecule.

  • PDF