• Title/Summary/Keyword: Host health

검색결과 465건 처리시간 0.032초

Probiotics의 역할과 임상적 가치 (The Role and Clinical Value of Probiotics)

  • 유경환;윤성우
    • 대한암한의학회지
    • /
    • 제10권1호
    • /
    • pp.75-86
    • /
    • 2005
  • Disease associated with microorganisms are far from resolved by current therapeutics. One of effective approach to health maintenance and disease control is the use of dietary bacterial and carbohydrate supplements. This comprises use of probiotics and prebiotics. Probiotics mean the live microorganisms, which when administered in adequate amounts confer a health benefit on the host. Prebiotics mean a nondigestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria that can Improve the host health. Especially, probiotics has the relation which is close with innate immunity and adaptive immunity. And probiotics has the clinical value with many disease like lactose intolerance, constipation, acute gastroenteritis, food hypersensitivity and allergy, atopic dermatitis, crohn's disease, rheumatoid arthritis, pelvic radiotherapy, intestinal inflammation and chemical exposure, colon cancer, inhibitory effect of Helicobacter pylori and lowering the level of cholesterol. We use jointly korean medicine and probiotics and it has the more therapeutic effect in the many disease.

  • PDF

The Within-Host Population Dynamics of Normal Flora in the Presence of an Invading Pathogen and Antibiotic Treatments

  • Kim, Jung-Mo;Lee, Dong-Hwan;Song, Yoon-Seok;Kang, Seong-Woo;Kim, Seung-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.146-153
    • /
    • 2007
  • A mathematical competition model between normal flora and an invading pathogen was devised to allow analysis of bacterial infections in a host. The normal flora includes the various microorganisms that live on or within the host and act as a primary human immune system. Despite the important role of the normal flora, no mathematical study has been undertaken on models of the interaction between it and invading pathogens against a background of antibiotic treatment. To quantify key elements of bacterial behavior in a host, pairs of nonlinear differential equations were used to describe three categories of human health conditions, namely, healthy, latent infection, and active infection. In addition, a cutoff value was proposed to represent the minimum population level required for survival. The recovery of normal flora after antibiotic treatment was also included in the simulation because of its relation to human health recovery. The significance of each simulation parameter for the bacterial growth model was investigated. The devised simulation showed that bacterial proliferation rate, carrying capacity, initial population levels, and competition intensity have a significant effect on bacterial behavior. Consequently, a model was established to describe competition between normal flora and an infiltrating pathogen. Unlike other population models, the recovery process described by the devised model can describe the human health recovery mechanism.

SARS-CoV-2 Infection of Airway Epithelial Cells

  • Gwanghui Ryu;Hyun-Woo Shin
    • IMMUNE NETWORK
    • /
    • 제21권1호
    • /
    • pp.3.1-3.16
    • /
    • 2021
  • Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading worldwide since its outbreak in December 2019, and World Health Organization declared it as a pandemic on March 11, 2020. SARS-CoV-2 is highly contagious and is transmitted through airway epithelial cells as the first gateway. SARS-CoV-2 is detected by nasopharyngeal or oropharyngeal swab samples, and the viral load is significantly high in the upper respiratory tract. The host cellular receptors in airway epithelial cells, including angiotensin-converting enzyme 2 and transmembrane serine protease 2, have been identified by single-cell RNA sequencing or immunostaining. The expression levels of these molecules vary by type, function, and location of airway epithelial cells, such as ciliated cells, secretory cells, olfactory epithelial cells, and alveolar epithelial cells, as well as differ from host to host depending on age, sex, or comorbid diseases. Infected airway epithelial cells by SARS-CoV-2 in ex vivo experiments produce chemokines and cytokines to recruit inflammatory cells to target organs. Same as other viral infections, IFN signaling is a critical pathway for host defense. Various studies are underway to confirm the pathophysiological mechanisms of SARS-CoV-2 infection. Herein, we review cellular entry, host-viral interactions, immune responses to SARS-CoV-2 in airway epithelial cells. We also discuss therapeutic options related to epithelial immune reactions to SARS-CoV-2.

Microbe-derived extracellular vesicles as a smart drug delivery system

  • Yang, Jinho;Kim, Eun Kyoung;McDowell, Andrea;Kim, Yoon-Keun
    • Translational and Clinical Pharmacology
    • /
    • 제26권3호
    • /
    • pp.103-110
    • /
    • 2018
  • The human microbiome is known to play an essential role in influencing host health. Extracellular vesicles (EVs) have also been reported to act on a variety of signaling pathways, distally transport cellular components such as proteins, lipids, and nucleic acid, and have immunomodulatory effects. Here we shall review the current understanding of the intersectionality of the human microbiome and EVs in the emerging field of microbiota-derived EVs and their pharmacological potential. Microbes secrete several classes of EVs: outer membrane vesicles (OMVs), membrane vesicles (MVs), and apoptotic bodies. EV biogenesis is unique to each cell and regulated by sophisticated signaling pathways. EVs are primarily composed of lipids, proteins, nucleic acids, and recent evidence suggests they may also carry metabolites. These components interact with host cells and control various cellular processes by transferring their constituents. The pharmacological potential of microbiome-derived EVs as vaccine candidates, biomarkers, and a smart drug delivery system is a promising area of future research. Therefore, it is necessary to elucidate in detail the mechanisms of microbiome-derived EV action in host health in a multi-disciplinary manner.

Molecular Cloning and Characterization of a Paramyosin from Clonorchis sinensis

  • Park, Tae-Joon;Kang, Jung-Mi;Na, Byoung-Kuk;Sohn, Woon-Mok
    • Parasites, Hosts and Diseases
    • /
    • 제47권4호
    • /
    • pp.359-367
    • /
    • 2009
  • Paramyosin is a myofibrillar protein present in helminth parasites and plays multifunctional roles in host-parasite interactions. In this study, we identified the gene encoding paramyosin of Clonorchis sinensis (CsPmy) and characterized biochemical and immunological properties of its recombinant protein. CsPmy showed a high level of sequence identity with paramyosin from other helminth parasites. Recombinant CsPmy (rCsPmy) expressed in bacteria had an approximate molecular weight of 100 kDa and bound both human collagen and complement 9. The protein was constitutively expressed in various developmental stages of the parasite. Imunofluorescence analysis revealed that CsPmy was mainly localized in the tegument, subtegumental muscles, and the muscle layer surrounding the intestine of the parasite. The rCsPmy showed high levels of positive reactions (74.6%, 56/75) against sera from patients with clonorchiasis. Immunization of experimental rats with rCsPmy evoked high levels of IgG production. These results collectively suggest that CsPmy is a multifunctional protein that not only contributes to the muscle layer structure but also to non-muscular functions in host-parasite interactions. Successful induction of host IgG production also suggests that CsPmy can be applied as a diagnostic antigen and/or vaccine candidate for clonorchiasis.

High-throughput Gene Expression Analysis to Investigate Host-pathogen Interaction in Avian Coccidiosis

  • Lillehoj Hyun, S.
    • 한국가금학회지
    • /
    • 제34권1호
    • /
    • pp.77-83
    • /
    • 2007
  • Poultry products including meat and eggs constitute a major protein source in the American diet and disease-causing pathogens represent major challenges to the poultry industry. More than 95% of pathogens enter the host through the mucosal surfaces of the respiratory, digestive and reproductive tracts and over the past few decades, the two main mechanisms used to control diseases have been the use of vaccines and antibiotics. However, in the poultry industry, there are mounting concerns over the ability of current vaccines to adequately protect against emerging hyper-virulent strains of pathogens and a lack of suitable, cost effective adjuvants. Thorough investigation of the immunogenetic responses involved in host-pathogen interactions will lead to the development of new and effective strategies for improving poultry health, food safety and the economic viability of the US poultry industry. In this paper, I describe the development of immunogenomic and proteomic tools to fundamentally determine and characterize the immunological mechanisms of the avian host to economically significant mucosal pathogens such as Eimeria. Recent completion of poultry genome sequencing and the development of several tissue-specific cDNA libraries in chickens are facilitating the rapid application of functional immunogenomics in the poultry disease research. Furthermore, research involving functional genomics, immunology and bioinformatics is providing novel insights into the processes of disease and immunity to microbial pathogens at mucosal surfaces. In this presentation, a new strategy of global gene expression using avian macrophage (AMM) to characterize the multiple pathways related to the variable immune responses of the host to Eimeria is described. This functional immunogenomics approach will increase current understanding of how mucosal immunity to infectious agents operates, and how it may be enhanced to enable the rational development of new and effective strategies against coccidiosis and other mucosal pathogens.

Degradation of immunoglobulins, protease inhibitors and interleukin-1 by a secretory proteinase of Acanthamoeba cutellanii

  • Na, Byong-Kuk;Cho, Jung-Hwa;Song, Chul-Yong;Kim, Tong-So
    • Parasites, Hosts and Diseases
    • /
    • 제40권2호
    • /
    • pp.93-99
    • /
    • 2002
  • The effect of a secretory proteinase from the pathogenic amoebae Acanthamoeba castellanii on host's defense-oriented or regulatory proteins such as immunoglobulins, interleukin-1, and protease inhibitors was investigated. The enzyme was found to degrade secretory immunoglobulin A (slgA), IgG, and IgM. It also degraded $interleukin-1{\alpha}$ ($IL-l{\alpha}$) and $IL-l{\beta}$. Its activity was not inhibited by endogenous protease inhibitors, such as ${\alpha}$2-macroglobulin, ${\alpha}l-trypsin$ inhibitor, and ${\alpha}2-antiplasmin$. Furthermore, the enzyme rapidly degraded those endogenous protease inhibitors as well. The degradation of host's defense-oriented or regulatory proteins by the Acanthanoeba proteinase suggested that the enzyme might be an important virulence factor in the pathogenesis of Acanthamoeba infection.

유산균 Probiotics와 생명의 연장에 대한 고찰 (Probiotics and Prolongation of Life)

  • 오세종
    • Journal of Dairy Science and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.31-37
    • /
    • 2008
  • One hundred one years have passed since Metchnikoff made his first scientific contribution to probiotics study. Intestinal lactic acid bacteria (LAB) for humans are closely associated with the host's health because LAB is an important biodefense factor in preventing colonization and subsequent proliferation of pathogenic bacteria in the intestine. A probiotic is recently defined as "live microorganisms that when administered in adequate amount confer a health benefit on the host". Some species of LAB have been claimed as probiotics, such as Lactobacillus acidophilus, L. casei, L. fermentum, L. plantarum, L. reuteri, and Lactococcus lactis. For understanding the general mechanism of probiotics, this paper would explore the early studies relating to probiotics and intestinal microbiota, and briefly introduce the Prolongation of Life written by Elie Metctmikoff.

  • PDF

Mycorrhizal Synthesis of Périgord Black Truffle (Tuber melanosporum) with Mexican Oak Species

  • Guevara-Guerrero, Gonzalo;Pacioni, Giovanni;Leonardi, Marco;Ocanas, Fortunato Garza;Hernandez, Rigoberto Gaitan
    • 한국미생물·생명공학회지
    • /
    • 제50권1호
    • /
    • pp.40-50
    • /
    • 2022
  • The Périgord black truffle (Tuber melanosporum) is an edible fungus and among the most expensive foods worldwide. It is the basis of a multimillion-dollar bio-business. Truffle farming does not exist in Mexico, and no formal studies have been conducted on its culture. This report describes the mycorrhizal synthesis (i.e., artificial union of fungus with host) of T. melanosporum with oak species native to Mexico (Quercus polymorpha, Q. fusiformis, and Q. canbyi). The mycorrhizal association was successful in Q. polymorpha and Q. fusiformis, as confirmed morphologically and using T. melanosporum molecular primers (ITSML/ITS4LNG). The effect of the ectomycorrhizal fungus on host growth (stem diameter) was statistically significant. Illustrations of the study are presented.