This study was conducted to investigate the predictors of hospital bankruptcy in Korea and to examine the predictive power for 3 types of statistical models of hospital bankruptcy. Data on 17 financial and 4 non-financial indicators of 30 bankrupt and 30 profitable hospitals in 1. 2, and 3 years before bankruptcy were obtained from the hospital performance databank of Korea Institute of Health Services Management. Significant variables were identified through mean comparison of each indicator between bankrupt and profitable hospitals, and the predictive power of statistical models of hospital bankruptcy were compared. The major findings are as follows. 1. Nine out of 21 indicators - fixed ratio, quick ratio, operating profit to total assets, operating profit to gross revenue, normal profit to total assets,normal profit to gross revenue, net profit to gross revenue, inventories turnrounds, and added value per adjusted patient - were found to be significantly predictitive variables in Logit and Probit models. 2. The predicdtive power of discriminant model of hospital bankruptcy in 1. 2, and 3 years before bankruptcy were 85.4, 79.0, and 83.8% respectively. With regard to the predictive power of the Logit model of hospital bankruptcy, they were 82.3, 75.8, and 80.6% respectively, and of the Probit model. 87.1. 80.6, and 88.7% respectively. 3. The predictive power of the Probit model of hospital bankruptcy is better than the other two predictive models.
This study investigated how much EVA which evaluate firm's value can explain hospital bankruptcy prediction as a explanatory variable including financial indicators in Korea. In this study, artificial neural network and logit regression which are traditional statistical were used as the model for bankruptcy prediction. Data used in this study were financial and economic value added indicators of 34 bankrupt and -:4 non-bankrupt hospitals from the Database of Korean Health Industry Development Institute. The main results of this study were as follows: First, there was a significant difference between the financial variable model including EVA and the financial variable model excluding EVA in pre-bankruptcy analysis. Second, EVA could forecast bankruptcy hospitals up to 83% by the logistic analysis. Third, the EVA model outperformed the financial model in terms of the predictive power of hospital bankruptcy. Fourth, The predictive power of neural network model of hospital bankruptcy was more powerful than the legit model. After all the result of this study will be useful to future study on EVA to evaluate bankruptcy hospitals forecast.
The hospital bankruptcy rate is increasing, therefore it is very important to predict the bankruptcy using the existing hospital management information. The hospital bankruptcy is often measured in year intervals, called grouped duration data, not by the continuous time elapsed to the bankruptcy. This study introduces a hierarchical generalized linear model(HGLM) for analysis of hospital bankruptcy data. The hazard function for each hospital may be influenced by unobservable latent variables, and these unknown variables are usually termed as random effects or frailties which explain correlations among repeated measures of the same hospital and describe individual heterogeneities of hospitals. Practically, the data of twenty bankrupt and sixty profitable hospitals were collected for five years, and were fitted to HGLM. The results were compared with those of the logit model. While the logit model resulted only in the effects of explanatory variables on the bankruptcy status at specific period, the HGLM showed variables with significant effects over all observed years. It is concluded that the HGLM with a fixed ratio and a period of total asset turnrounds was justified, and could find significant within and between hospital variations.
본 연구는 우리 나라 병원도산 예측모형을 도출하기 위한 연구로 1992년에서 1997년 사이 5년간의 전국 병원 경영통계 자료를 이용하여 1995년부터 1997년 사이에 도산한 병원중도산전 3년까지의 연속된 자료가 있는 31개 병원을, 비교군 병원은 도산병원과 유사한 병상규모를 가지고 당기순이익이 발생한 31개 우량병원을 선정하여 단계적 판별분석에 의한 실증연구를 시행하였다. 본 연구의 구체적 연구결과는 다음과 같다. 첫째, 도산전 각 연도별로 도산병원과 우량병원간에 연구변수의 단순 평균치분석 결과, 자본구조 지표인 자기자본비율과 수익성지표인 총자본의료이익을, 의료수익의료이익을, 총자본경상이익을, 의료수익경상이익율, 총자본순이익을 등은 도산 1, 2, 3년전 모두에서 도산병원과 우량병원간에 유의한 차이를 보였다. 자본고정성지표는 도산 1년전에 고정비율이 유의한 차이를 보였고, 유동성지표는 도산 1년전에는 유동비율과 당좌비율이 유의한 차이를 보였고 도산 2년전에는 당좌비율만이 유의한 차이를 보였다. 활동성지표로는 도산 1년전에 총자본회전율과 재고자산회전율이 유의한 차이를 보였고 도산 2년전에는 총자본회전율과 의료미수금회전율이, 도산 3년전에는 의료미수금회전율만이 유의한 차이를 보였다. 생산성지표로는 도산 2년전에 총자본투자효율이, 도산 3년전에는 조정환자1인당 부가가치가 유의한 차이를 보였다. 진료실적지표로는 도산 3년전 일평균재원환자수가 유의한 차이를 보였다. 둘째, 도산 1, 2, 3년전 판별함수는 각각 도산 1년전 Z=($0.0166\times$당좌비율)-($0.1356\times$총자본경상이익을)-($1.545\times$총자본회전을), 도산 2년전 Z=($0.0119\times$당좌비율)-($0.1433\times$총자본의료이익율)-($0.0227\times$총자본투자효율), 도산 3년전 Z=($0.3533\times$총자본순이익율)-($0.1336\times$의료미수금회전율)-($0.04301\times$조정환자1인당부가가치)+($0.000119\times$일평균재원환자수)이었다. 셋째, 도출된 도산 1, 2, 3년전 각 판별함수의 예측력은 77.42%, 79.03%, 82.25% 이었다.
According to many recent studies suggesting that cash flow analysis method tends to be more effective than traditional financial index analysis method to predict corporate bankruptcy, this study applies the cash flow analysis method to hospital business to identify the significant variables which can distinguish between superior hospitals and bankruptcy hospitals. The author analyzed recent 3 years, i.e. from the year of 2000 to the year of 2002, financial statements of 31 bankrupt hospitals In 2003, and the same number of superior hospitals through using Multiple Discriminant Analysis and Logit Analysis. The results are belows; First, the study releases that Logit Analysis is more likely to be effective than Multiple Discriminant Analysis. Second, this research also shows that traditional financial index analysis method is more superior compare to cash flow analysis method for hospital bankruptcy predict model. Finally, this study suggest that the significant variables, which can distinguish superior hospitals from bankrupt hospitals, are Operating/Current Liabilities$(Y_2)$, CFO/Equity$(Y_5)$ for cash flow analysis method and Net Worth to Total Assets Ratio$(X_1)$, Quick Ratio $(X_3)$, Return on Assets$(X_6)$, Growth Rate of Patient Revenues$(X_{16})$ for traditional financial index analysis method.
This study used the Data Envelopment Analysis, a mathematical linear programming method, to evaluate cost efficiency of hospitals in Korea. DEA method was applied to 244 hospitals: 31 bankrupt hospitals and 213 survived hospitals. Among the 213 sound hospitals, 11 hospitals showed efficiency score 100, but more than 40 hospitals recorded efficiency scores lower than 60. This result implies that more hospitals can be bankrupt in the restructuring process of the industry within 1-2 years. Among the 31 bankrupt hospitals, the highest technical efficiency score was 0.821 and 11 hospitals showed technical efficiency lower than 0.6. This implies that selective financial support based on cost efficiency by the government will be valuable to prevent bankruptcy of these hospitals. The logistic analysis showed statistically significant relationship between bankruptcy and efficiency of hospitals in Korea.
This study aims to examine the influence of growth rate, profitability and current ratio, which are confronted with static trade-off theory and pecking order theory, on capital structure of superior hospital and bankrupt hospital. Firstly, superior hospitals show positive correlation between growth rate and short-term loans, long-term loans, and short-term liabilities while bankrupt hospitals represent negative correlation. Superiority hospital and bankruptcy hospital show different financing behaviors, especially, short-term loan is the significant characteristic that discriminates between superior hospital and bankrupt hospital. Secondly, this paper studied the correlation between profitability and short-term loan, which the superior hospitals shows negative correlation, to contrast, bankrupt hospital have positive correlation. Consequently, the short-term loan is the most distinguishable factor between the superior hospital and bankrupt hospitals in terms of profitability. To conclude, this study shows that excess short-term loans can be the most important cause for hospital's bankrupt. Accordingly, strategic and effective policy about the short-term loan will be required in order to protect hospital's bankrupt.
의료기관들의 부채관리 문제는 도산 등 경영위험의 직접적인 요인으로 파악되고 있는데, 현금흐름은 소요자금이나 도산예측에 유용한 정보를 제공해 준다. 본 연구는 24개 종합병원과 23개 병원을 대상으로, 영업활동 현금흐름이 부채상환능력에 미치는 영향을 살펴보기 위하여 회귀분석을 실시하였으며, 부채 위험성에 대비하기 위한 현금흐름 관리방안 모색을 위하여 다변량 판별분석을 실시하였다. 연구결과, 종합병원들은 당기순이익 매입채무의 증대 의료미수금과 재고자산의 감소 방법으로 부채상환능력 수준이 이루어지고 있었는데, 부채상환능력이 없는 경우에는 당기순이익 향상, 현금유출 없는 비용 증대, 의료미수금 감소, 매입채무 증대 등을 검토할 필요성이 제기되었다. 병원들은 당기순이익 현금유출 없는 비용과 매입채무의 증대 현금유입 없는 수익과 의료미수금 및 재고자산의 감소 방법으로 부채상환 능력 수준이 이루어지고 있었는데, 부채상환능력이 없는 경우에는 매입채무의 증대를 검토할 필요성이 제기되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.