• Title/Summary/Keyword: Horn Design

Search Result 180, Processing Time 0.039 seconds

A Horn of Half-wave Design and Manufacture for Ultrasonic Metal Welding (초음파 금속 용착을 위한 반파장 혼의 설계 및 제작)

  • Kim, Eun-Mi;Jang, Ho-Su;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.790-796
    • /
    • 2010
  • This paper designed the horn of half-wave needed for Ultrasonic meta) welding. The horn has to be designed and manufactured accurately, because measurements such as the shape, length, mass and etc. have effects on the resonant frequency and the vibration mode. Designed horn of half-wave has the feature of 40,000Hz of nature frequency, and maximizes vibration range in the Tip by resonance in the frequency of ultrasonic wave machine. In this study, we calculated and analyzed the natural frequency to find the optimal design of the horn that amplified the amplitude about double by the modal analysis and harmonic analysis using ANSYS. And we did FFT analysis of the manufactured horn.

Vibration Analysis and Design of Ultrasonic Horn to the Bonded Dissimilar Materials (이종접합을 위한 초음파 혼 설계 및 진동해석)

  • Jung, An-Mok;Jeon, Euy-Sik;Kim, Chul-Ho
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.79-79
    • /
    • 2009
  • Ultrasonic fine welding, cutting, cleaning, inspection and measurement is widely used in various fields over 20kHz. However, for High Frequency of 60kHz or more study areas is still insufficient, and the result is lacking. Therefore, this study used ultrasonic horn to the Bonding of Dissimilar Materials for effective design. Finite element analysis (FEA) is using the equations of motion to establish the model. The optimal design for the basic interpretation of vibration characteristics of the ultrasonic measures horn will examine the design.

  • PDF

ASTE receiver optics design using ultra wideband corrugated horn at combined ALMA band 7 and band 8 frequencies

  • Lee, Bangwon;Lee, Jung-won;Gonzalez, Alvaro
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.57.3-58
    • /
    • 2017
  • We report the detailed design of an unprecedented wideband(band7+8) corrugated feed horn in ASTE focal plane array aiming for future ALMA receiver. We have found that such design constraints as return loss, cross-polarization level, beam width and phase curvature can be controlled by optimizing critical corrugation parameters at the throat and flare region of the horn. The success of optimization manifest itself through simulated aperture effciency over 80 % at the entire frequency range. Physical implications of the resulting corrugation parameters are discussed.

  • PDF

Multi-beam Antenna Analysis

  • Lee, Jeom-Hun;Oh, Seung-Hyeub
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.2
    • /
    • pp.71-76
    • /
    • 2004
  • This paper describes the antenna analysis of the multi-beam for communicationsatellite. The design core parameters of the antenna system are optimal antennadiameter, feed horn type and hom size, F/D, and the coordinate of offset horns. Thepaper deals with the method to determine design core parameters of optimal antennadiameter, feed horn type and horn size. F/D, and the coordinate of offset horns, andthe performances of design result.

Manufacturing Cost Optimization of Ultrasonic Horn for Flip-chip Bonding using Tolerance Design (공차설계에 의한 플립칩 접합용 초음파 혼의 제작 비용 최적화)

  • Kim, Jong-Hyok;Kwon, Won-Tae;Lee, Soo-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.879-886
    • /
    • 2012
  • The ultrasonic horn used for bonding of flip chip has been designed to vibrate at a natural frequency. The ultrasonic horn must be manufactured accurately in physical terms, because the small change of mechanical properties may result in the significant change of natural frequency. Therefore, tight tolerance is inevitable to keep the natural frequency in acceptable range. However, since tightening of the tolerance increases the manufacturing cost significantly, trade-off between the cost and accuracy is necessary. In this research, an attempt was made to design the ultra sonic horn within acceptable natural frequency while the manufacturing cost was kept as low as possible. For this purpose, among the 18 tolerances of physical terms of the ultrasonic horn, the most important 4 factors were selected using Taguchi method. The equation to relate those main factors and the natural frequency was made using response surface method. Finally, optimal design scheme for minimum manufacturing cost without a loss of performance was determined using SQP method.

Design of a Compact Coaxial Waveguide Feed Horn for Dual Band (이중 대역 소형 동축 도파관 급전 혼 설계)

  • Yun, Sohyeun;Uhm, Manseok;Yom, Inbok
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.109-113
    • /
    • 2015
  • This paper presents the study results on a dual band feed horn for the focused reflector. A coaxial waveguide structure is attractive to avoid blockage from the feeder. The inner conductor as a hollow waveguide is designed to excite TE11 of a circular waveguide for high frequency. For low frequency, the design of the outer coaxial waveguide that propagates coaxial TE11 and prevents fundamental TEM is presented. The horn size for generation of these modes results in the degradation of performance. The return loss is improved by a capacitive iris and an inductive iris The enhanced pattern symmetry by dual mode is presented. The horn design in this paper are verified through the test.

Design of a Ultrasonic Cutting-tool Utilizing Resonance Condition of Transverse Vibration of Beam Type Structure (보의 횡진동 공진특성을 이용한 초음파 진동절삭공구 설계)

  • Byun, Jin-Woo;Han, Sang-Bo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.720-725
    • /
    • 2011
  • Most ultrasonic vibration cutting tools are operated at the resonance condition of the longitudinal vibration of the structure consisting of booster, horn and bite. In this study, a transverse vibration tool with beam shape is designed to utilize the vibration characteristics of the beam. Design point of the transverse vibration tool is to match the resonance frequency of the bite to the frequency of the signal to excite the piezoelectric element in the booster. The design process to match the natural frequency of the longitudinal vibration mode of the horn and that of the transverse vibration mode of the bite is presented. Dimensions of the horn and bite are searched by trend analysis through which the standard shapes of the horn and bite are determined. After the dimensions of each component of the cutting tool consisting of booster, horn and bite are determined, the assembled structure was experimentally tested to verify that true resonant condition is achieved and proper vibrational displacement are obtained to ensure that enough cutting force is generated.

Design of 0.6~6 GHz Ultra Wideband Quad-ridge Horn Antenna (0.6~6 GHz 초 광대역 쿼드릿지 혼 안테나 설계)

  • Choi, Cheoljin;Lee, Moonhee;Son, Taeho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.77-82
    • /
    • 2019
  • In this paper, a 0.6~6GHz quad-ridge horn antenna which can be used for the antenna measurement of 5.8GHz WiFi system from lowest frequency band of mobile LTE (Long Term Evolution) is designed and implemented. The quad-ridge horn antenna has quadruple ridges of exponential function, a back-short and a cavity. Based on this structure, we design the cavity size, ridge gap and feed gap to have broadband characteristics. For implementation, the plates material of aluminum and copper are used for the horn and four ridges, respectively. And the insulator supports are used to maintain the gap between ridges. By measurement, antenna has the gain of 6.2~13.35dBi with the return loss of less than -6dB (under VSWR 3 : 1) in the entire design band. The results of this study can be widely used to the antenna studies on the mobile communication including low frequency band of LTE, the EMI measurement and the standard calibration measurement.

Preliminary Design Process of Vehicle Horn (Vehicle Horn의 초기 설계 Process)

  • Gi, Joon-Woo;Kim, Young-Sung;Jung, Kyung-Tae;Lim, Myung-Seop;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.864-865
    • /
    • 2015
  • 차량 운전 시 주변에 경고를 하는 수단인 Vehicle Horn은 경험에 의존하는 방식으로 설계되고 있다. 그러나 Vehicle horn의 성능 및 제작비용을 고려한 최적설계를 위해서는 정형화된 설계 process가 필요하다. 이러한 필요를 충족시키고자 본 논문에서는 Vehicle Horn의 초기 설계 process를 제안한다. 자기등가회로를 이용해 특성을 예측하여 Vehicle horn의 초기 형상을 결정한다. 그리고 초기 형상에 대한 FEA를 수행하여 자기등가회로를 검증하고 전자기 파라미터를 산정한다. 마지막으로 전자기 파라미터를 Vehicle horn의 전기-기계 시스템을 구현한 Dynamic Simulator에 적용하여 Vehicle horn의 거동을 예측한다.

  • PDF