• Title/Summary/Keyword: Horizontal wing

Search Result 47, Processing Time 0.023 seconds

Interaction of Tip Vortices Generated by a Split Wing

  • Youn, Won Suk;Han, Yong Oun;Lee, Dong Yeon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.39-45
    • /
    • 2001
  • To reduce the strength of tip vortex of the fixed wing, a horizontal wing-let splitted into two parts was utilized, and the interaction between vortices generated by these wing-lets was investigated by the hot-wire anemometry. The process of vortex forming and merging was clarified by measurements of velocity vectors and their contours at five downstream cross-sections; 0.05C(chord length), 0.2C, 0.5C, 1.0C and 2.0C. Both vortex-lets formed by each wing-lets rotate counterclockwise and merge into a larger single vortex within a short downstream distance, 0.5C in this case. The strength of the merged tip vortex turned out to become smaller than that of the plain wing tip near the vortex core.

  • PDF

Simulation Analysis on Air Stream Around the Tail Wing of Airplane (비행기 꼬리날개 주위의 기류에 관한 시뮬레이션 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.23-27
    • /
    • 2011
  • This study analyzes about the variation of pressure and stream velocity according to the movement of tail wing. The pressure at the front part of airplane becomes lower than at the rear part and the stream velocity has decreased by being bumped against the wing of airplane. The pressure at the front part of rudder becomes higher than at its rear part according to the movement of rudder among the tail wings of airplane. The more stream velocity becomes decreased, the more rudder spreads out. As the tail wing of airplane folds, the pressure at its front part becomes higher. And the pressure at its rear part becomes lower than at its front part. The more tail wing of airplane folds, the more stream velocity becomes decreased.

A Study on Conceptual Structural Design of Wing for a Small Scale WIG Craft Using Carbon/Epoxy and Foam Sandwich Composite Structure

  • Kong, Chang-Duk;Park, Hyun-Bum;Kang, Kuk-Gin
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.343-358
    • /
    • 2008
  • This present study provides the structural design and analysis of main wing, horizontal tail and control surface of a small scale WIG (Wing-in-Ground Effect) craft which has been developed as a future high speed maritime transportation system of Korea. Weight saving as well as structural stability could be achieved by using the skin.spar.foam sandwich and carbon/epoxy composite material. Through sequential design modifications and numerical structural analysis using commercial FEM code PATRAN/NASTRAN, the final design structural features to meet the final design goal such as the system target weight, structural safety and stability were obtained. In addition, joint structures such as insert bolts for joining the wing with the fuselage and lugs for joining the control surface to the wing were designed by considering easy assembling as well as more than 20 years service life.

Tail Sizing of 95-Seat Type Turboprop Aircraft (95인승급 터보프롭 중형항공기 꼬리날개 사이징)

  • Lee, Jangho;Kang, Youngsin;Bae, Hyogil;Lee, Hae-Chang
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.15-19
    • /
    • 2013
  • Tail wing is important to designing of civil aircrafts, because it is responsible for aircraft stability and control. Tail wing has a role in aircraft control and makes aircraft fly stably without any pilot control input. Also, designing of tail wing determine trim drag force in whole aircraft. Center of gravity(CG) of aircraft travels with various effects as placement of passenger's seats, location of cargo bay, etc. In designing horizontal tail volume, aircraft CG travel has to be considered to have margin so that it should be sized to provide adequate stability and control for the airplane's entire CG range throughout the flight envelope. Finally, it is essential to have sufficient elevator control to perform stall at forward CG for all flaps down configurations. Such stalls establish the FAR stall speed which airplane take-off and landing performance. This paper deals with the process for tail wing design regarding the aircraft CG travel and results for 95-seat type turboprop aircraft.

Development of Technology for Optimized Wing Design of Subsonic Aircraft (아음속 항공기 날개 최적 설계 기술 개발)

  • Kim, Cheol-Wan;Choi, Dong-Hoon
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.175-182
    • /
    • 2011
  • Optimized design was performed for a subsonic aircraft wing. The subsonic aircraft is dual turbo-prop and carrying less than 100 passengers. The cruise speed is Mach 0.6. The design was performed by two stages. The first stage is to decide the height of horizontal tail by analyzing the directional stability with Vorstab and then, the optimized wing configuration was selected with Piano, a optimizer commercially available. Fluent, a commercial CFD software was utilized to predict the aerodynamic performance of the aircraft. Drag of the aircraft was minimized with maintaining constant lift for cruise. The optimization reduced 10 counts from the initial wing configuration.

Wind Tunnel Test to Enhance Aerodynamic Characteristics of Forward Swept Wing Airplane (전진익형 항공기 공력특성 증진을 위한 풍동시험)

  • Chung, Jin-Deog;Lee, Jang-Yeon;Sung, Bong-Zoo;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.800-808
    • /
    • 2004
  • Wind tunnel test of an airplane model with forward swept wing was done in KARI LSWT to evaluate and measure the aerodynamic characteristics of initially designed configuration. Since the given wing planform did not fully satisfy the design requirements, local flow control devices such as vortilon, vortex generator and flow fence were used to delay separation and to enhance aerodynamic characteristics. Also decision making processes of design parameters such as vertical tail boom length, the location, size and the incidence angle of horizontal tail were discussed. The general aerodynamic characteristics of forward swept wing for various control surface deflection conditions of flap, aileron and elevator were also given.

Vibration Control of Composite Wing-Rotor System of Tiltrotor Aircraft (틸트로터 항공기 복합재료 날개의 진동 제어)

  • Song, Oh-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.509-516
    • /
    • 2007
  • Mathematical modeling and vibration control of a tiltrotor aircraft composite wing-rotor system are investigated in this study. A wing-mounted rotor can be tilted from the vertical position to a horizontal one, and vice versa. Effect of vibration control of the wing-rotor system via piezoelectricity is studied as a function of tilt angle, ply angle of composite wing and rotor's spin speed. Composite wing is modeled as a thin-walled box beam having a circumferentially uniform stiffness configuration that produces elastic coupling between flap-lag and between extension-twist behavior. Numerical simulations are provided and pertinent conclusions are outlined.

Ornithopter actuator characteristics analysis by motion capture experiment (모션캡쳐 실험을 통한 조류모방 날갯짓 비행체 구동 특성 분석)

  • Gim, Hakseong;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.173-179
    • /
    • 2017
  • This paper analyzes actuator characteristics for main wing and tail surfaces of an ornithopter by using a motion capture test. Experiments with the ornithopter are conducted indoor, and its fuselage is held on a jig to reduce interaction with vibration generated by flapping motion. The motion capture system detects the movement of markers attached on the main wing and tail wing tip. Experimental results show that the main wings tend to change its amplitude according to the flapping frequency, and the lift and thrust generation simulation is implemented by applying the experimental results and the ornithopter specification to Modified Strip Theory. Step input excitation is applied for experimental analysis of the tail wing in horizontal and vertical directions. As a result, horizontal and vertical tail wings have different characteristics in terms of overshoot, final value, damping ratio and natural frequency because they have different wing structures and linkages.

Depth Control of a Hybrid Underwater Glider in Parallel with Control of Horizontal Tail Wing (수평 꼬리 날개의 제어를 병행하는 하이브리드 수중 글라이더의 깊이 제어)

  • Joo, Moon Gab
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.1
    • /
    • pp.25-31
    • /
    • 2019
  • An underwater glider is a type of autonomous unmanned vehicle and it advances using a vertical zig-zag glide. For this purpose, the position of an internal battery is regulated to control its attitude, and the amount of water in a buoyancy bag is regulated to control the depth. Underwater glider is suitable for a long-distance mission for a long time, because the required energy is much smaller than the conventional autonomous unmanned vehicle using propeller propulsion system. In this paper, control of horizontal tail wing is newly added to the conventional battery position and buoyancy control. The performance of the proposed controller is shown through Matlab simulation.

A Study on Structural Design and Analysis for Composite Main Wing and Horizontal Tail of A Small Scale WIG Vehicle (경량화 복합재 위그선의 주익 및 수평 미익 구조 설계 및 해석에 관한 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Kim, Ju-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.149-156
    • /
    • 2007
  • The present study provides structural design and analysis of main wing and horizontal tail of a small scale WIG(Wing in Ground Effect) vehicle which has been developed as a part of the high speed maritime transportation system for the future of Korea. Weight saving as well as structural stability could be achieved by skin-spar with foam sandwich design and with wide application of carbon/epoxy composite material. A commercial FEM code, NASTRAN, was utilized to confirm the structural safety and stability through sequential design modifications to meet the final design goal. In addition, each wing and the fuselage were fastened together by eight insert bolts with high strength to accomodate easy assembling and disassembling as well as to guarantee a service life longer than 20 years.