• Title/Summary/Keyword: Horizontal type

Search Result 1,348, Processing Time 0.034 seconds

Acoustical Estimation of Zooplankton Distributions From the Backscattered Signal of the Acoustic Doppler Current Profiler in the Korea Strait (한국 해협에서 ADCP(Acoustic Doppler Current Profiler)의 음파 산란신호에 의한 동물플랑크톤 분포의 추정)

  • Na, Jung Yul;Park, Joung Soo
    • 한국해양학회지
    • /
    • v.24 no.4
    • /
    • pp.172-183
    • /
    • 1989
  • Acoustical estimation of vertical distributions of zooplankton was carried out by using the backscattered signals of ADCP which was deployed in the Korea Strait in September, 1978. the backscattered signals of ADCP represents the total backward sound intensity caused by the scatters existing within the insonified water column of 8m deep. Based on these backscattered intensities, the estimated number of individual zooplankton (namely, Copepods) varies with depth such that in the surface layer above the thermocline, the numbers are exceedingly larger than the lower layer. It is also shown that a relatively larger number of individuals exists in the bottom cold water layer in the centeral part of the Strait. The horizontal distribution of the zooplankton in the surface layer across the west channel of the Strait shows that the number is higher in the coastal zone of the Korea and it decreases toward the central and then remains constant up to the vicinity of the Tsushima Island where it increases again. This type of distributions is well fitted to the one obtained at several stations by the conventional method at least in qualitative way. Therefore, it is quite plausible to use the ADCP data for monitoring the spatial and temporal distributions of zooplankton.

  • PDF

Visual Comfort Enhancement of Auto-stereoscopic 3D Display using the Characteristic of Disparity Distribution (시차 분포 특성을 이용한 오토스테레오스코픽 3차원 디스플레이 시청 피로도 개선 방법)

  • Kim, Donghyun;Sohn, Kwanghoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.107-113
    • /
    • 2016
  • Visual discomfort is a common problem in three-dimensional videos. Among the methods to overcome visual discomfort presented in current research, disparity adjustment methods provide little guidance in determining the condition for disparity control. We propose a diaprity adjustment based on the characteristics of disparity distribution on visual comfort, where the visual comfort level is used as the adjustment paramter, in parallax barrier type auto-stereoscopic 3D display. In this paper, we use the horizontal image shift method for disparity adjustment to enhance visual comfort. The speeded-up robust feature is used to estimate the disparity distribution of 3D sequences, and the required amount for disparity control is chosen based on the pre-defined characteristics of disparity distribution on visual comfort. To evaluate the performance of the proposed method, we used a 3D equipment. Subjective tests were conducted at the fixed optimal viewing distance. The results show that comfortable videos were generated based on the proposed disparity adjustment method.

Optical implementation of unidirectional integral imaging based on pinhole model (핀홀 모델 기반의 1차원 집적 영상 기법의 광학적 구현)

  • Shin, Dong-Hak;Kim, Nam-Woo;Lee, Joon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.337-343
    • /
    • 2007
  • Since three-dimensional (3D) images reconstructed in interval imaging technique are related to the resolution of elemental images, there has been a problem that ray information of elemental images increases largely in order to obtain high-resolution 3D images. In this paper, to overcome this problem, a new unidirectional integral imaging based on pinhole model is proposed. Proposed method provides a new type of unidirectional elemental images, which are simply obtained by magnifying single horizontal pixel line of each elemental image to the vertical size of lenslet using ray analysis based on pinhole model and used to display 3D images. In proposed method, reduction effect of the ray information of elemental images can be obtained by scarifying vortical parallax. Feasibility of the proposed scheme is experimentally demonstrated and its results are presented.

Experiment for 3D Coregistration between Scanned Point Clouds of Building using Intensity and Distance Images (강도영상과 거리영상에 의한 건물 스캐닝 점군간 3차원 정합 실험)

  • Jeon, Min-Cheol;Eo, Yang-Dam;Han, Dong-Yeob;Kang, Nam-Gi;Pyeon, Mu-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • This study used the keypoint observed simultaneously on two images and on twodimensional intensity image data, which was obtained along with the two point clouds data that were approached for automatic focus among points on terrestrial LiDAR data, and selected matching point through SIFT algorithm. Also, for matching error diploid, RANSAC algorithm was applied to improve the accuracy of focus. As calculating the degree of three-dimensional rotating transformation, which is the transformation-type parameters between two points, and also the moving amounts of vertical/horizontal, the result was compared with the existing result by hand. As testing the building of College of Science at Konkuk University, the difference of the transformation parameters between the one through automatic matching and the one by hand showed 0.011m, 0.008m, and 0.052m in X, Y, Z directions, which concluded to be used as the data for automatic focus.

Combination rules and critical seismic response of steel buildings modeled as complex MDOF systems

  • Reyes-Salazar, Alfredo;Valenzuela-Beltran, Federico;de Leon-Escobedo, David;Bojorquez-Mora, Eden;Barraza, Arturo Lopez
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.211-238
    • /
    • 2016
  • The Maximum seismic responses of steel buildings with perimeter moment resisting frames (MRF), modeled as complex MDOF systems, are estimated for several incidence angles of the horizontal components and the critical one is identified. The accuracy of the existing rules to combine the effects of the individual components is also studied. Two and three components are considered. The critical response does not occur for principal components and the corresponding incidence angle varies from one earthquake to another. The critical response can be estimated as 1.40 and 1.10 times that of the principal components, for axial load and interstory shears, respectively. The rules underestimate the axial load but reasonably overestimate the shears. The rules are not always inaccurate in the estimation of the combined response for correlated components. On the other hand, totally uncorrelated (principal) components are not always related to an accurate estimation. The correlation of the individual effects (${\rho}$) may be significant, even for principal components. The rules are not always associated to an inaccurate estimation for large values of ${\rho}$, and small values of ${\rho}$ are not always related to an accurate estimation. Only for perfectly uncorrelated harmonic excitations and elastic analysis of SDOF systems, the individual effects of the components are uncorrelated and the rules accurately estimate the combined response. The degree of correlation of the components, the type of structural system, the response parameter under consideration, the location of the structural member and the level of structural deformation must be considered while estimating the level of underestimation or overestimation.

Assessment of RELAP5/MOD2 Code using Loss of Offsite Power Transient of Kori Unit 1 (고리 1호기 외부 전원 상실사고에 의한 RELAP5/MOD2코드 모델 평가)

  • Chung, Bub-Dong;Kim, Hho-Jung;Lee, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.12-19
    • /
    • 1990
  • The Loss of Offsite Power Transient at 77.5% power which occurred on June 9, 1981 at the Kori Unit 1 PWR (Pressurized Water Reactor) is simulated using the RELAP5/MOD2 system thermal-hydraulics computer code. Major thermal-hydraulic parameters are compared with the available plant data. The comparison of the analysis results with the plant data demonstrates that the RELAP5/MOD2 code has the capability to simulate the thermal-hydraulic behaviour of PWRs under accident conditions of this type with accuracy, except the pressurizer pressure and level. The pressurizer pressure increase is sensitive to the in surge now it is believed that the interracial heat transfer in a horizontal stratified flow regime may be estimated low and the compression effect due to insurge flow may be high. In the nodalization sensitivity study it is found that S/G noding with junctions between bypass plenum and steam dome is preferred to simulate the S/G water level decreasing and avoid the spurious level peak at trubine trip.

  • PDF

PIXEL-BASED CORRECTION METHOD FOR GAFCHROMIC®EBT FILM DOSIMETRY

  • Jeong, Hae-Sun;Han, Young-Yih;Kum, O-Yeon;Kim, Chan-Hyeong;Ju, Sang-Gyu;Shin, Jung-Suk;Kim, Jin-Sung;Park, Joo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.670-679
    • /
    • 2010
  • In this paper, a new approach using a pixel-based correction method was developed to fix the non-uniform responses of flat-bed type scanners used for radiochromic film dosimetry. In order to validate the method's performance, two cases were tested: the first consisted of simple dose distributions delivered by a single port; the second was a complicated dose distribution composed of multiple beams. In the case of the simple individual dose condition, ten different doses, from 8.3 cGy to 307.1 cGy, were measured, horizontal profiles were analyzed using the pixel-based correcton method and compared with results measured by an ionization chamber and results corrected using the existing correction method. A complicated inverse pyramid dose distribution was made by piling up four different field shapes, which were measured with GAFCHROMIC$^{(R)}$EBT film and compared with the Monte Carlo calculation; as well as the dose distribution corrected using a conventional method. The results showed that a pixel-based correction method reduced dose difference from the reference measurement down to 1% in the flat dose distribution region or 2 mm in a steep dose gradient region compared to the reference data, which were ionization chamber measurement data for simple cases and the MC computed data for the complicated case, with an exception for very low doses of less than about 10 cGy in the simple case. Therefore, the pixel-based scanner correction method is expected to enhance the accuracy of GAFCHROMIC$^{(R)}$EBT film dosimetry, which is a widely used tool for two-dimensional dosimetry.

Collapse Initiation and Mechanisms for a Generic Multi-storey Steel Frame Subjected to Uniform and Travelling Fires

  • Rackauskaite, Egle;Kotsovinos, Panagiotis;Lange, David;Rein, Guillermo
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.265-283
    • /
    • 2021
  • To ensure that fire induced collapse of a building is prevented it is important to understand the sequence of events that can lead to this event. In this paper, the initiation of collapse mechanisms of generic a multi-storey steel frame subjected to vertical and horizontal travelling fires are analysed computationally by tracking the formation of plastic hinges in the frame and generation of fire induced loads. Both uniform and travelling fires are considered. In total 58 different cases are analysed using finite element software LS-DYNA. For the frame examined with a simple and generic structural arrangement and higher applied fire protection to the columns, the results indicate that collapse mechanisms for singe floor and multiple floor fires can be each split into two main groups. For single floor fires (taking place in the upper floors of the frame (Group S1)), collapse is initiated by the pull-in of external columns when heated beams in end bays go into catenary action. For single floor fires occurring on the lower floors(Group S2), failure is initiated (i.e. ultimate strain of the material is exceeded) after the local beam collapse. Failure in both groups for single floor fires is governed by the generation of high loads due to restrained thermal expansion and the loss of material strength. For multiple floor fires with a low number of fire floors (1 to 3) - Group M1, failure is dominated by the loss of material strength and collapse is mainly initiated by the pull-in of external columns. For the cases with a larger number of fire floors (5 to 10) - Group M2, failure is dominated by thermal expansion and collapse is mainly initiated by swaying of the frame to the side of fire origin. The results show that for the investigated frame initiation of collapse mechanisms are affected by the fire type, the number of fire floors, and the location of the fire floor. The findings of this study could be of use to designers of buildings when developing fire protection strategies for steel framed buildings where the potential for a multifloor fire exists.

The Study on the Radiation-Proof Video Camera system Remote Module of the Tube type (촬상관타입의 원격모듈화 내방사선 카메라시스템 연구)

  • Baek, Dong-Hyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.793-799
    • /
    • 2018
  • The CCD camera is easily deteriorated by radiation, and an integrated camera using an image pickup tube is used in a high radiation area. We implemented a radiation camera system which is divided into a camera head using radiation-resistant electronic components and a remote control using weak radiation-resistant electronic components such as TR, IC, etc. According to the experimental results, the first damage of the electronic parts was IC for horizontal and vertical sync generation, and it was confirmed that if the radiation of $2{\times}10^5{\sim}10^6rad$ is accumulated, the normal function is lost. In addition, the signal transmission cable for remoteization has added an input/output buffer circuit and reduced the closed loop area of the shield and the cable to eliminate signal loss correction and noise. Therefore, it is expected that the maintenance cost will be greatly reduced and practical because only the camera head part can be used instead of replacing the entire system.

Estimation of fundamental natural period of vibration for reinforced concrete shear walls systems

  • Shatnawi, Anis S.;Al-Beddawe, Esra'a H.;Musmar, Mazen A.
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.295-310
    • /
    • 2019
  • This study attempts to develop new simplified approximate formulas to predict the fundamental natural periods of vibration (T) for bearing wall systems engaged with special reinforced concrete shear walls (RCSW) under seismic loads. Commonly, seismic codes suggested empirical formulas established by regression analysis of measured T for buildings during earthquake motions. These formulas depend on structure type, building height, number, height and length of SW, and ratio of SW area to base area of structure. In this study, a parametric investigation is performed for T of 110 selected models of bearing RCSW systems with varying structural height, configuration of horizontal plans including building width, number and width of bays, presence of middle corridors and core SWs. For this purpose, a 3D non-linear response time history (TH) analysis is implemented using ETABS v16.2.1. New formulas to estimate T are anticipated and compared with those obtained from formulas of IBC 2012 and ASCE/SEI 7-10. Moreover, the study examines responses of an arbitrarily two selected test model of 60 m and 80 m in height with presence of SWs having middle corridors. It is observed that the performance of the tested buildings is different through arising of considerable errors when using codes' formulas for estimating T. Accordingly, using the present proposed formulas exhibits more reasonable and safer design compared to codes' formulas. The results showed that equitable enhancement is promising to improve T formulas approaching enhanced and accurate estimation of T with reliable analysis, design, and evaluation of bearing RCSW systems.