• Title/Summary/Keyword: Horizontal separation distance

Search Result 22, Processing Time 0.025 seconds

Fire Extinguishing Capability of an Automatic Spreading Fire Extinguisher in Accordance with Horizontal Distance from a Fire Source (자동확산소화장치의 이격거리에 따른 소화성능평가연구)

  • Kwark, Ji-Hyun;Kim, Dong-Suk;Ku, Jae-Hyun
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.38-43
    • /
    • 2013
  • An automatic spreading fire extinguisher usually installed in a closed area like a boiler room, a laundry store or a restaurant's kitchen room is one of the fire protection equipments. This extinguisher automatically discharges dry powder, extinguishing fire. As this extinguisher has the extinguishing capability applicable to the nominal protection area, objects outside the area cannot be properly extinguished. However only its number is being requested according to the floor area in the related laws, and the extinguishing capability depends on the distance from a fire source. In this study we tried to investigate the extinguishing capability of the automatic spreading fire extinguisher in accordance with horizontal separation distance from a fire source. It appeared that the maximum horizontal separation distance was about 30 cm for both class A and B fire to be certainly extinguished.

Identification of key elements for stable flight of drones and horizontal space compartment in urban area (드론의 안정적 비행을 위한 핵심요소와 도시 수평 공간 구획)

  • Kim, Jung-Hoon;Kim, Hong-Bae
    • Journal of Korea Planning Association
    • /
    • v.53 no.7
    • /
    • pp.39-48
    • /
    • 2018
  • The purpose of this study is to verify the stable flight conditions of drones within a limited urban area by using the ICAO(International Civil Aviation Organization) reich model which is using to evaluate civil aircraft stability. The results of the study are summarized as follows. First, in order for the drones flying stably, the horizontal safety separation distance between a drone and another should be at least 1,852M. Second, assuming that no obstacles within 1,852M of horizontal space, two drones can be fly into upper and lower spaces. However there are obstacles such as buildings, it is impossible to secure a 1,852M distance between drones. Third, sensitivity analysis point out that the separation interval($s_x$) of drone aviation has the greatest influence on the TLS(Target Level of Safety). If future research is conducted to lower the numerical values, the safety distance between a drone and another drone will be drastically reduced, allowing more detailed urban space division, and will be presented as a scientific numerical value for establishing a dedicated path for the drones.

Comparison of Experimental and FDS Data for Calculating Heat-Affected Range in Forest Fires (산불 열영향 범위 산정을 위한 실험 및 FDS 데이터 비교)

  • Kim, H.S.;Kang, Y.J.;Kim, J.H.;Kim, K.H.;Lee, B.D.;Kim, Jeong Hun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.91-96
    • /
    • 2014
  • This research deals with the combustion experiment of pine trees, which are the most representative species in Korea. Experimental data are compared with theoretical ones using Fire Simulation Program(FDS). It is considered that horizontal/vertical temperature distribution and radiant heat influence on adjacent areas in fire scenes. The linear function for separation distance to temperature was drawn by applying Stefan-Boltzmann's law; $y=112.13133{\times}({\sigma}T^4)^{-0.52916}$ for calculating the separation distance. In combustion experiment, the radiant heat came to $1.4{\sim}1.5kW/m^2$ in case of the separation distance by one meter. The numerical values mean that human body show the critical level of pain after one minute without a protective equipment.

Basic Study on Criteria for Setting Natural Conservation Area (자연환경 보전지역 설정기준에 관한 기초연구)

  • Sung, Hyun-Chan;Hwang, So-Young;Chae, Mie-Oak;Park, Eun-Suk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.1-12
    • /
    • 2010
  • This study aims at analyzing the development status of surroundings of natural environment conservation areas and securing an adequate distance from development activities to conserve natural environment conservation areas efficiently or developing an improvement plan for setting conservation areas. Findings from the study shows that 1) rather than simply designating a legal natural environment conservation area, a conceptual scope approach of a "core area", "buffer area", and "transition area" such as in zoning of a "biosphere reserve" by UNESCO is recommended; 2) when setting an adequate range in a natural environment conservation area, it should be set by fully considering locational situation and the regional and environmental features of surroundings rather than setting a certain distance uniformly; 3) instead of designating wetlands only as a conservation area, entry and exit areas should be also included as buffer areas and in the case of wild animals, not only habitats but also feeding areas should be designated as conservation areas; and 4) an adequate horizontal separation space is important in the case of ground development, but for natural resources related to subterranean water and geological situation such as wetlands, an adequate vertical separation space should be fully considered.

A Study on the Influence Range of Lateral Movement of Abutment on the Soft Clay by MCC Model (MCC 모델에 의한 연약지반의 교대측방이동 영향범위에 관한 연구)

  • Park, Choon Sik;Kim, Jong Hwan;Baek, Jin Sool
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.195-205
    • /
    • 2013
  • This study, using the MCC Model to consider consolidation, estimated the range within which no influences occur from lateral movement and its amount of the foundation pile and abutment on the soft ground. This study performed finite element analyses, with variations on the adhesiveness and internal friction angle, depth of soft clay, embankment height, consolidation parameters, and separation distance between the abutment and embankment. The abutment's horizontal displacement exhibits linear change with a longer separation distance, and changes into an exponential form as the embankment gets closer to the abutment. As the soft clay layer becomes 10 m deeper, the horizontal displacement tends to increase 1.5~3.0 times. However, it decreases at a rate of 0.3~0.95 when adhesiveness is increased by 10 $kN/m^2$ and internal friction angle is increased by $5^{\circ}$. The increase change rate in a lateral movement amount becomes greater if it is closer to the abutment when the abutment separation distance is long. When the distance is short, the change rate of horizontal displacement increases in similar a way, but it tends to be decreasing overall.

Horizontal hydrodynamic coupling between shuttle tanker and FPSO arranged side-by-side

  • Wang, Hong-Chao;Wang, Lei
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.275-294
    • /
    • 2013
  • Side-by-side offloading operations are widely utilized in engineering practice. The hydrodynamic interactions between two vessels play a crucial role in safe operation. This study focuses on the coupled effects between two floating bodies positioned side-by-side as a shuttle tanker-FPSO (floating production, storage and offloading) system. Several wave directions with different side-by-side distances are studied in order to obtain the variation tendency of the horizontal hydrodynamic coefficients, motion responses and mean drift forces. It is obtained that the coupled hydrodynamics between two vessels is evidently distinguished from the single body case with shielding and exaggerating effects, especially for sway and yaw directions. The resonance frequency and the peak amplitude are closely related with side-by-side separation distance. In addition, the horizontal hydrodynamics of the shuttle tanker is more susceptible to coupled effects in beam waves. It is suggested to expand the gap distance reasonably in order to reduce the coupled drift forces effectively. Attention should also be paid to the second peaks caused by hydrodynamic coupling. Since the horizontal mean drift forces are the most mainly concerned forces to be counteracted in dynamic positioning (DP) system and mooring system, prudent prediction is beneficial in saving consumed power of DP system and reducing tension of mooring lines.

A Preliminary Experiment for Rayleigh-Benard Natural Convection for Severe Accident Condition (중대사고시 노심용융물의 Rayleigh-Benard 자연대류 예비 실험)

  • Moon, Je-Young;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.254-264
    • /
    • 2012
  • Rayleigh-Benard natural convection experiments were carried out as the preliminary experiment to simulate the natural convection of the core melt at the severe accident conditions. This work focused on the influences of plate separation distance(s), the existence of the side walls and crust geometries of upper and lower plates. Based upon the analogy concept, a cupric acid-copper sulfate electroplating system($H_2SO_4-CuSO_4$) was employed as the mass transfer system and measurements were made for $Ra_s$ ranging from $1.06{\times}10^7$ to $2.91{\times}10^{10}$. The test results measured for a single horizontal plate were in good agreement with the correlation reported by McAdams and those for two horizontal plates showed the similar trend to the existing Rayleigh-Benard heat transfer correlations developed by Dropkin and Somerscales, Globe and Dropkin. The measured heat transfer rate decreased with the increasing separation distance between the two plates and became similar to those for a single horizontal plate. Fin arrays mounted on both upper and lower plates enhanced the heat transfer rates. For all cases, the heat transfer rates measured for open side walls are higher than those for closed ones.

Development of miniaturized dual-frequency FM transmitter (소형화된 듀얼 주파수 FM 송신기 개발)

  • Ryu, Jeong-Tak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.5
    • /
    • pp.31-35
    • /
    • 2011
  • In this paper, the miniaturized FM transmitter with dual-frequency is developed, and tested in the field. In this system two frequencies 88.1 MHz and 88.3 MHz is used. The transmitter is designed with 2.6 cm^3 system size, horizontal, vertical, height respectively. The operating voltage is 3.7 V and used the built-in storage battery in order to minimize. The system can use continuously during 7 hour with once charging. The channel separation ability is 40 dB. Consequently, this system is used conveniently with short distance information transmitter system at the industry field.

An Analysis of Potential Interference in the Vicinity of the Vertical Ground Rod (수직 접지전극 주변에서 전위간섭의 분석)

  • Lee, Bok-Hee;Lee, Kang-Soo;Seong, Chang-Hoon;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.85-91
    • /
    • 2011
  • A grounding system is generally composed of several vertical, horizontal electrodes or grids. Excessive ground potential rises due to adjacent grounding electrodes can cause failures or misoperation of electronic devices and control systems. It is therefore necessary for computer-related and information-oriented equipment to be placed at a sufficient distance from the areas influenced by grounding electrodes. In this paper, in order to propose a method for evaluating the ground potential rise and interference in the vicinity of vertical grounding electrodes, the experimental and theoretical results on the potential interference between vertical grounding electrodes and its frequency dependence were described. The ground potential rise is sharply decreased with increasing the distance between grounding electrodes. In case that the separation of vertical grounding electrodes is less than 1.5[m], the potential interference coefficient was greater than 0.1 and linearly increased with the frequency of the test current within the frequency of 1[MHz].

Seismic pounding effects on the adjacent symmetric buildings with eccentric alignment

  • Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Omar, Mohamed;Abdel Zaher, Ahmed K.
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.715-726
    • /
    • 2019
  • Several municipal seismic vulnerability investigations have been identified pounding of adjacent structures as one of the main hazards due to the constrained separation distance between adjacent buildings. Consequently, an assessment of the seismic pounding risk of buildings is superficial in future adjustment of design code provisions for buildings. The seismic lateral oscillation of adjacent buildings with eccentric alignment is partly restrained, and therefore a torsional response demand is induced in the building under earthquake excitation due to eccentric pounding. In this paper, the influence of the eccentric seismic pounding on the design demands for adjacent symmetric buildings with eccentric alignment is presented. A mathematical simulation is formulated to evaluate the eccentric pounding effects on the seismic design demands of adjacent buildings, where the seismic response analysis of adjacent buildings in series during collisions is investigated for various design parameters that include number of stories; in-plan alignment configurations, and then compared with that for no-pounding case. According to the herein outcomes, the effects of seismic pounding severity is mainly depending on characteristics of vibrations of the adjacent buildings and on the characteristics of input ground motions as well. The position of the building wherever exterior or interior alignment also, influences the seismic pounding severity as the effect of exposed direction from one or two sides. The response of acceleration and the shear force demands appear to be greater in case of adjacent buildings as seismic pounding at different levels of stories, than that in case of no-pounding buildings. The results confirm that torsional oscillations due to eccentric pounding play a significant role in the overall pounding-involved response of symmetric buildings under earthquake excitation due to horizontal eccentric alignment.