• 제목/요약/키워드: Horizontal plates

검색결과 142건 처리시간 0.026초

3D 촉각 센서의 설계와 이론적인 해석 (Design and Theoretic Analysis of 3D Tactile Sensor)

  • 심귀보;황한건
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.870-874
    • /
    • 2005
  • 본 논문에서는 외부의 힘을 효율적으로 감지하기 위한 촉각센서의 설계 및 이론적인 해석해 관한 것이다. 일반적으로 촉각센서가 표면의 변화를 감지하기 위해서는 외부의 자극을 센서부에 효과적으로 전달할 수 있어야 하기 때문에 미세한 힘에도 변화를 감지할 수 있는 센서의 설계가 필요하다. 이에 본 논문에서는 양전극 사이에 유연성을 갖는 유전체를 사용하여 서 보다 효율적인 감지가 가능하도록 하였다. 즉, 상층부에 설치되어 있는 센서부가 하층부에 설치되어 있는 센서들과 형성하는 전계의 변화로 인하여 발생하는 전압의 차이를 감지하도록 하였으며, 상층부와 하층부의 사이에 일정의 유연성을 갖는 유전체를 삽입함으로써 효율적인 촉각 감지를 할 수 있도록 설계하였다.

성수문(聖樹文)에 대(對)한 연구(硏究) - 앗시리아식(式) 수목중심문양(樹木中心文樣)을 중심(中心)으로 - (A study on the Art Style of Sacred Tree - Focusing on the Assyrian Style Tree Pattern -)

  • 김문자
    • 패션비즈니스
    • /
    • 제5권3호
    • /
    • pp.63-71
    • /
    • 2001
  • The symbol of the sacred tree represents the world tree. They were influenced by Tree worship in Northern mounted nomadic groups, and the first is quite obvious, that the sacred tree is a palm tree. The Assyrian sacred tree possesses characteristics, making the tree iconographic and rather artificial. The tree typically has a thin trunk arranged in two or three tiers. Each tier is separated by horizontal plates or bands. The top of the tree is crowned with a palmette form. Wavy streamers emanate from the tree abd terminate in palmettes in a criss cross fashion. The central trunk is topped with a palmette and surrounded the trunk with palmettes emphasizing a link to date trees. The number of branches on the tree is limited, and there are usually seven, fifteen or thirty branches. The connection of these numbers with those of the week, and of the lunar wax and wane is so obvious. The branches on the tree may have indeed represented a calender of some sort. Mainly based on the excavated tomb articles of the three kingdoms and referred to Chinese and Japanese ones, Sacred Tree pattern showed that was lightly influenced by the times and area, but was slowly changed and developed to different types through those each ages generally. The Sacred Tree type was three part in according to the wavy streamers emanate from the tree abd, Sacred tree type I, Sacred tree type II, Sacred tree type III[the Mountain(; 山)-typed piled up Sacred Tree].

  • PDF

Effectiveness of some conventional seismic retrofitting techniques for bare and infilled R/C frames

  • Kakaletsis, D.J.;David, K.N.;Karayannis, C.G.
    • Structural Engineering and Mechanics
    • /
    • 제39권4호
    • /
    • pp.499-520
    • /
    • 2011
  • The effectiveness of a technique for the repair of reinforced concrete members in combination with a technique for the repair of masonry walls of infilled frames, damaged due to cyclic loading, is experimentally investigated. Three single - story, one - bay, 1/3 - scale frame specimens are tested under cyclic horizontal loading, up to a drift level of 4%. One bare frame and two infilled frames with weak and strong infills, respectively, have been tasted. Specimens have spirals as shear reinforcement. The applied repair technique is mainly based on the use of thin epoxy resin infused under pressure into the crack system of the damaged RC joint bodies, the use of a polymer modified cement mortar with or without a fiberglass reinforcing mesh for the damaged infill masonry walls and the use of CFRP plates to the surfaces of the damaged structural RC members, as external reinforcement. Specimens after repair, were retested in the same way. Conclusions concerning the effectiveness of the applied repair technique, based on maximum cycles load, loading stiffness, and hysteretic energy absorption capabilities of the tested specimens, are drawn and commented upon.

철골 커플링 보-벽체 접합부의 변형 특성 (Deformation Characteristics of Steel Coupling Beam-Wall Connection)

  • 박완신;전에스더;한민기;김선우;황선경;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.435-438
    • /
    • 2005
  • The use of new hybrid systems that combine the advantages of steel and reinforced concrete structures has gained popularity. One of these new mixed systems consists of steel beams and reinforced concrete shear wall, which represents a cost- and time-effective type of construction. A number of previous studies have focused on examining the seismic response of steel coupling beams in a hybrid wall system. However, the shear transfer of steel coupling beam-wall connections with panel shear failure has not been thoroughly investigated. The objective of this research was to investigate the seismic performance of steel coupling beamwall connections governed by panel shear failure. To evaluate the contribution of each mechanism, depending upon connection details, an experimental study was carried out The test variables included the reinforcement details that confer a ductile behaviour on the steel coupling beam-wall connection, i.e., the face bearing plates and the horizontal ties in the panel region of steel coupling beam-wall connections. It investigates the seismic behaviour of the steel coupling beams-wall connections in terms of the deformation characteristics. The results and discussion presented in this paper provide background for a companion paper that includes a design model for calculating panel shear strength of the steel coupling beam-wall connections.

  • PDF

Seismic experiment and analysis of rectangular bottom strengthened steel-concrete composite columns

  • Hui, Cun;Zhu, Yanzhi;Cao, Wanlin;Wang, Yuanqing
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.599-621
    • /
    • 2016
  • In order to study the working mechanism of rectangular steel-concrete composite columns subjected to compression-bending load and further determine the seismic performance index, a bottom strengthened rectangular steel reinforced concrete (SRC) column with concealed steel plates and a bottom strengthened rectangular concrete filled steel tube (CFST) columns were proposed. Six column models with different configurations were tested under horizontal low cyclic loading. Based on the experiments, the load-bearing capacity, stiffness and degradation process, ductility, hysteretic energy dissipation capacity, and failure characteristics of the models were analyzed. The load-bearing capacity calculation formulas for a normal section and an oblique section of bottom strengthened rectangular steel-concrete composite columns were pesented and a finite element (FE) numerical simulation of the classical specimens was performed. The study shows that the load-bearing capacity, ductility, and seismic energy dissipation capacity of the bottom strengthened rectangular steel-concrete composite columns are significantly improved compared to the conventional rectangular steel-concrete composite columns and the results obtained from the calculation and the FE numerical simulation are in good agreement with those from the experiments. The rectangular steel-concrete composite column with bottom strengthened shows better seismic behavior and higher energy dissipation capacity under suitable constructional requirements and it can be applied to the structure design of high-rise buildings.

섬유보강 탄성받침의 설계 및 실험적 해석 (Design and Experimental Analysis of Fiber Reinforced Elastomeric Isolator)

  • 문병영;강경주;강범수;김계수
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2026-2033
    • /
    • 2002
  • The purpose of this study is to investigate the effect of mechanical properties of the FREI using horizontal stiffness and vertical stiffness by experiments. Two kinds of FREI are designed and fabricated. The steel plates of SREI are replaced with fibers in order to reduce the cost of fabrication and installation. At first, the Nylon fiber is adopted as feasibility study of FREI. The experimental results of Nylon FREI and SREI show that the vertical stiffness of Nylon FREI is lower than SREI, and effective damping is two times higher than SREI. Carbon is adopted, by these rusults, as strong reinforcement than Nylon and full scale of carbon FREI was designed and fabricated. By the experimental test results, it is shown that the vertical stiffness of carbon FREI is three times higher than SREI, and two times higher in effective damping. As a result, the proposed FREI can replace the SREI as a seismic isolator.

드롭랜딩 시 시선 방향의 차이가 하지관절의 안정성과 협응에 미치는 영향 (The Effects of Gaze Direction on the Stability and Coordination of the Lower Limb Joint during Drop-Landing)

  • Kim, Kewwan;Ahn, Seji
    • 한국운동역학회지
    • /
    • 제31권2호
    • /
    • pp.126-132
    • /
    • 2021
  • Objective: The purpose of this study was to investigate how three gaze directions (bottom, normal, up) affects the coordination and stability of the lower limb during drop landing. Method: 20 female adults (age: 21.1±1.1 yrs, height: 165.7±6.2 cm, weight: 59.4±5.9 kg) participated in this study. Participants performed single-leg drop landing task on a 30 cm height and 20 cm horizontal distance away from the force plate. Kinetic and kinematic data were obtained using 8 motion capture cameras and 1 force plates and leg stiffness, loading rate, DPSI were calculated. All statistical analyses were computed by using SPSS 25.0 program. One-way repeated ANOVA was used to compared the differences between the variables in the direction of gaze. To locate the differences, Bonferroni post hoc was applied if significance was observed. Results: The hip flexion angle and ankle plantar flexion angle were significantly smaller when the gaze direction was up. In the kinetic variables, when the gaze direction was up, the loading rate and DPSI were significantly higher than those of other gaze directions. Conclusion: Our results indicated that decreased hip and ankle flexion angles, increased loading rate and DPSI when the gaze direction was up. This suggests that the difference in visual information can increase the risk of injury to the lower limb during landing.

양발 드롭랜딩 시 만성적인 발목 불안정성 유무에 따른 하지주요관절의 역학적 특성 (Biomechanical Characteristic on Lower Extremity with or without Chronic Ankle Instability during Double Leg Drop Landing)

  • Jeon, Kyoungkyu;Park, Jinhee
    • 한국운동역학회지
    • /
    • 제31권2호
    • /
    • pp.113-118
    • /
    • 2021
  • Objective: The purpose of this study was to investigate differences of landing strategy between people with or without chronic ankle instability (CAI) during double-leg drop landing. Method: 34 male adults participated in this study (CAI = 16, Normal = 18). Participants performed double-leg drop landing task on a 30 cm height and 20 cm horizontal distance away from the force plate. Lower Extremities Kinetic and Kinematic data were obtained using 8 motion capture cameras and 2 force plates and loading rate was calculated. Independent samples t-test were used to identify differences between groups. Results: Compared with normal group, CAI group exhibits significantly less hip internal rotation angle (CAI = 1.52±8.12, Normal = 10.63±8.44, p = 0.003), greater knee valgus angle (CAI = -6.78±5.03, Normal = -12.38 ±6.78, p = 0.011), greater ankle eversion moment (CAI = 0.0001±0.02, Normal = -0.03±0.05, p = 0.043), greater loading Rate (CAI = 32.65±15.52, Normal = 18.43±10.87, p = 0.003) on their affected limb during maximum vertical Ground Reaction Force moment. Conclusion: Our results demonstrated that CAI group exhibits compensatory movement to avoid ankle inversion during double-leg drop landing compared with normal group. Further study about how changed kinetic and kinematic affect shock absorption ability and injury risk in participants with CAI is needed.

An analytical model of the additional confining stress in a prestress-reinforced embankment

  • Fang Xu;Wuming Leng;Xi Ai;Hossein Moayedi;Qishu Zhang;Xinyu Ye
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.517-529
    • /
    • 2023
  • Using a device composed of two lateral pressure plates (LPPs) and a steel reinforcement bar to apply horizontal pressure on slope surfaces, a newly developed prestress-reinforced embankment (PRE) is proposed, to which can be adopted in strengthening railway subgrades. In this study, an analytical model, which is available of calculating additional confining stress (σH) at any point in a PRE, was established based on the theory of elasticity. In addition, to verify the proposed analytical model, three dimensional (3D) finite element analyses were conducted and the feasibility in application was also identified and discussed. In order to study the performance of the PRE, the propagation of σH in a PRE was analyzed and discussed based on the analytical model. For the aim of convenience in application, calculation charts were developed in terms of three dimensionless parameters, and they can be used to accurately and efficiently predict the σH in a PRE regardless of the embankment slope ratio and LPP side length ratio. Finally, the potential applications of the proposed analytical model were discussed.

목재 접합부의 강도특성 및 장기 내력 평가 (I) - 소나무재의 Bo1t 및 Drift pin 접합부 능력(耐力) 성능 평가 - (Studies on Evaluation for Long-term Loading of Composite Wood-joint and Characteristics of Joint Strength (I) - The strength properties of mechanical joints of Pinus densiflora with drift pin and bolt -)

  • 홍순일;황원중;김은삼;진광성
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권4호
    • /
    • pp.1-8
    • /
    • 2001
  • 본 실험은 강판삽입형에 드리프트 핀, 볼트를 이용한 2가지 형태의 접합부의 강도 특성을 검토하였다. 하중 방향은 섬유평행방향 하중 (0도 하중)과 섬유직교방향 하중 (90도 하중)을 가하여 하중방향의 차이 및 접합구에 따른 강도 특성을 비교하였다. 소나무재의 강판 삽입의 드리프트 핀, 볼트 인장형 전단강도 실험에서 다음과 같은 결과를 얻었다. 1. 같은 단거리의 섬유평행방향 하중시 최대하중은 접합구의 직경이 증가함에 따라 증가되는 경향을 보였으며, 90도 하중인 경우 드라프트핀, 볼트 접합부는 2가지 접합구 직경(10 mm, 12 mm)에서 모든 소나무 시편이 할렬파괴 되었다. 2. 하중-변형 곡선의 초기 직선영역을 나타내는 직선과 접합구 직경의 5% 만큼을 횡축의 정방향으로 평행 이동시킨 접합부의 항복하중(Py)과 최대 하중비의 증가 정도는 0도 하중의 경우가 높고, 볼트의 접합에서 높았다. 또한 세장비가 증가될수록 높은 경향을 나타냈다. 3 항복 추정식으로 구한 항복하중과 실험값에서 5% 차감한 항복하중은 볼트 접합부에 비해 드리프트 핀 접합부가 추정치와 실험치가 잘 일치되었다.

  • PDF