• Title/Summary/Keyword: Horizontal fracture

Search Result 177, Processing Time 0.025 seconds

A new geomechanical approach to investigate the role of in-situ stresses and pore pressure on hydraulic fracture pressure profile in vertical and horizontal oil wells

  • Saberhosseini, Seyed Erfan;Keshavarzi, Reza;Ahangari, Kaveh
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.233-246
    • /
    • 2014
  • Estimation of fracture initiation pressure is one of the most difficult technical challenges in hydraulic fracturing treatment of vertical or horizontal oil wells. In this study, the influence of in-situ stresses and pore pressure values on fracture initiation pressure and its profile in vertical and horizontal oil wells in a normal stress regime have been investigated. Cohesive elements with traction-separation law (XFEM-based cohesive law) are used for simulating the fracturing process in a fluid-solid coupling finite element model. The maximum nominal stress criterion is selected for initiation of damage in the cohesive elements. The stress intensity factors are verified for both XFEM-based cohesive law and analytical solution to show the validation of the cohesive law in fracture modeling where the compared results are in a very good agreement with less than 1% error. The results showed that, generally by increasing the difference between the maximum and minimum horizontal stress, the fracture pressure and its profile has been strongly changed in the vertical wells. Also, it's been clearly observed that in a horizontal well drilled in the direction of minimum horizontal stress, the values of fracture pressure have been significantly affected by the difference between overburden pressure and maximum horizontal stress. Additionally, increasing pore pressure from under-pressure regime to over-pressure state has made a considerable fall on fracture pressure in both vertical and horizontal oil wells.

Healing after horizontal root fractures: 3 cases with 2-year follow-up

  • Choi, Yoorina;Hong, Sung-Ok;Lee, Seok-Ryun;Min, Kyung-San;Park, Su-Jung
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.2
    • /
    • pp.126-131
    • /
    • 2014
  • Among dental traumas, horizontal root fractures are relatively uncommon injuries. Proper initial management and periodical evaluation is essential for the successful treatment of a root-fractured tooth. If pulpal necrosis develops, endodontic treatment is indicated, exclusively for the coronal fragment. Fragment diastases exert a great influence on healing at the fracture line and on pulpal necrosis. An adequately treated root-fractured tooth has a good prognosis. This case report describes the treatment and 2-yr follow up of 3 maxillary central incisors, first with horizontal root fracture, second with horizontal root fracture and avulsion, and third with horizontal root fracture and lateral luxation. All three cases were treated with mineral trioxide aggregate (ProRoot, Dentsply). During 2 yr of follow-up evaluation, the root-fractured teeth of the present patients were well retained in the arch, showing periodontal healing, even after endodontic treatment.

Study on mechanism of macro failure and micro fracture of local nearly horizontal stratum in super-large section and deep buried tunnel

  • Li, Shu-cai;Wang, Jian-hua;Chen, Wei-zhong;Li, Li-ping;Zhang, Qian-qing;He, Peng
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.253-267
    • /
    • 2016
  • The stability of surrounding rock will be poor when the tunnel is excavated through nearly horizontal stratum. In this paper, the instability mechanism of local nearly horizontal stratum in super-large section and deep buried tunnel is revealed by the analysis of the macro failure and micro fracture. A structural model is proposed to explain the mechanics of surrounding rock collapse under the action of stress redistribution and shed light on the macroscopic analytical approach of the stability of surrounding rock. Then, some highly effective formulas applied in the tunnel engineering are developed according to the theory of mixed-mode micro fracture. And well-documented field case is made to demonstrate the effectiveness and accuracy of the proposed analytical methods of mixed-mode fracture. Meanwhile, in order to make the more accurate judgment about yield failure of rock mass, a series of comprehensive failure criteria are formed. In addition, the relationship between the nonlinear failure criterion and $K_I$ and $K_{II}$ of micro fracture is established to make the surrounding rock failure criterion more comprehensive and accurate. Further, the influence of the parameters related to the tension-shear mixed-mode fracture and compression-shear mixed-mode fracture on the propagation of rock crack is analyzed. Results show that ${\sigma}_3$ changes linearly with the change of ${\sigma}_1$. And the change rate is related to ${\beta}$, angle between the cracks and ${\sigma}_1$. The proposed simple analytical approach is economical and efficient, and suitable for the analysis of local nearly horizontal stratum in super-large section and deep buried tunnel.

Hydraulic fracturing experiments of highly deviated well with oriented perforation technique

  • Zhu, Hai Y.;Deng, Jin G.;Liu, Shu J.;Wen, Min;Peng, Cheng Y.;Li, Ji R.;Chen, Zi J.;Hu, Lian B.;Lin, Hai;Guang, Dong
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.153-172
    • /
    • 2014
  • In order to investigate the effect of different perforation angles (the angle between the perforation direction and the maximum horizontal principal stress) on the fracture initiation and propagation during hydraulic fracturing of highly deviated well in oil & gas saturated formation, laboratory experiments of the hydraulic fracturing had been carried out on the basis of non-dimensional similar criteria by using 400^3 $mm^3$ cement cubes. A plane fracture can be produced when the perforations are placed in the direction of the maximum horizontal principal stress. When the perforation angle is $45^{\circ}$, the fractures firstly initiate from the perforations at the upper side of the wellbore, and then turn to the maximum horizontal principal stress direction. When the well deviation angle and perforation angle are both between $45^{\circ}$ and $90^{\circ}$, the fractures hardly initiate from the perforations at the lower side of the wellbore. Well azimuth (the angle between the wellbore axis and the maximum horizontal principal stress) has a little influence on the fracture geometries; however it mainly increases the fracture roughness, fracture continuity and the number of secondary fractures, and also increases the fracture initiation and propagation pressure. Oriented perforating technology should be applied in highly deviated well to obtain a single plane fracture. If the well deviation angle is smaller, the fractures may link up.

Treatment of Multiple Horizontal Root Fractures of the Maxillary Anterior: A case report (상악 전치부 다발성 수평 치근 파절의 치료: 증례보고)

  • Sung, Kun-Hwa;Min, Jeong-Bum;Park, Tae-Young
    • The Journal of the Korean dental association
    • /
    • v.58 no.8
    • /
    • pp.486-494
    • /
    • 2020
  • Objectives: Management of a horizontal root fracture of an anterior teeth is challenging and often requires multiple approaches for improving the functional and esthetic outcomes. This case report describes the treatment and 2-yr follow up of 3 maxillary incisors with horizontal root fracture. Two maxillary central incisors were treated with Mineral Trioxide Aggregate (ProRoot MTA, Dentsply, Tulsa, OK, USA). Left maxillary lateral incisors were treated with endodontic treatment and submerged. During 2-yr of follow-up evaluation, the root-fractured teeth of the present patients were well retained in the arch, showing periodontal healing even after endodontic treatment.

  • PDF

Study on fracture mechanics of granite specimens with different precast notch depths based on DIC method

  • Shuwen Cao;Hao Shu
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.393-400
    • /
    • 2023
  • Displacements near crack and stress intensity factor (SIF) are key parameters to solve rock failure issue when using fracture mechanics. In order to study the horizontal displacement and stress intensity factor of the mode I fracture, a series of three-point bending tests of granite specimens with central notch were carried out. The evolution of horizontal displacements of precast notch and crack tip opening displacements (CTOD) were analyzed based on the digital image correlation (DIC) method. Stress intensity factors for three-point bending beams with arbitrary span-to-width ratios(S/W) were calculated by using the WU-Carlsson analytical weight function for edge-crack finite width plate and the analytical solution of un-cracked stress by Filon. The present study provides a high efficient and accurate method for fracture mechanics analysis of the three-point bending granite beams.

Analytical solutions for crack initiation on floor-strata interface during mining

  • Zhao, Chongbin
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.237-255
    • /
    • 2015
  • From the related engineering principles, analytical solutions for horizontal crack initiation and propagation on a coal panel floor-underlying strata interface due to coal panel excavation are derived in this paper. Two important concepts, namely the critical panel width of horizontal crack initiation on the panel floor-underlying strata interface and the critical panel width of vertical fracture (crack) initiation in the panel floor, have been presented. The resulting analytical solution indicates that: (1) the first criterion can be used to express the condition under which horizontal plane cracks (on the panel floor-underlying strata interface or in the panel floor because of delamination) due to the mining induced vertical stress will initiate and propagate; (2) the second criterion can be used to express the condition under which vertical plane cracks (in the panel floor) due to the mining induced horizontal stress will initiate and propagate; (3) this orthogonal set of horizontal and vertical plane cracks, once formed, will provide the necessary weak network for the flow of gas to inrush into the panel. Two characteristic equations are given to quantitatively estimate both the critical panel width of vertical fracture initiation in the panel floor and the critical panel width of horizontal crack initiation on the interface between the panel floor and its underlying strata. The significance of this study is to provide not only some theoretical bases for understanding the fundamental mechanism of a longwall floor gas inrush problem but also a benchmark solution for verifying any numerical methods that are used to deal with this kind of gas inrush problem.

Persistent Gingival Swelling and Fistula Obscured Horizontal Root Fracture: A Case Report

  • Juyeon, Cho
    • Journal of Korean Dental Science
    • /
    • v.15 no.2
    • /
    • pp.147-151
    • /
    • 2022
  • Horizontal root fracture (HRF) is a result of trauma to teeth and periodontium, which implies severe injury to cementum, dentin, and pulp. This is a rare case of HRF in the maxillary lateral incisor of a 62-year-old male who only presented persistent gingival swelling, fistula, and dull pain at first. An apical radiolucency of unknown origin turned out to be a result of hidden HRF at the coronal third level that was later visualized radiographically during endodontic treatment. The tooth was scheduled to be extracted upon the patient's agreement. The purpose of this report is to alert clinicians about the importance of diagnosing HRF through thorough clinical and radiographic examinations. Where there is persistent fistula without proper cause, HRF should be considered as a causative factor, and the diagnosis could be effective with aid of cone beam computed tomography, electronic root apex locator, as well as other clinical signs.

Management of horizontal root fractures by fabrication of canine protected occlusion using composite resin

  • Shin, Joo-Hee;Kim, Ryan Jin-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.3
    • /
    • pp.180-184
    • /
    • 2012
  • Traumatic injuries of the face often involve root fractures especially in anterior teeth. The prognosis and the treatment of the root fracture depend on the extent of the fracture line, general health and patient compliance. This case report outlines a new conservative trial treatment modality to stabilize the maxillary central incisors with horizontal root fracture on the cervical to middle third by fabricating canine guidance to remove loading on the traumatized maxillary central incisors during eccentric movements and thus inducing spontaneous healing of the fractured line between the fragments. Radiographs after thirty months showed adequate healing with no signs of pathological changes including root resorption, ankylosis or displacement. Long term follow-up revealed that vitality, stability and aesthetics were maintained and the patient was satisfied with the outcome.

Numerical investigation on overburden migration behaviors in stope under thick magmatic rocks

  • Xue, Yanchao;Wu, Quansen;Sun, Dequan
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.349-359
    • /
    • 2020
  • Quantification of the influence of the fracture of thick magmatic rock (TMR) on the behavior of its overlying strata is a prerequisite to the understanding of the deformation behavior of the earth's surface in deep mining. A three-dimensional numerical model of a special geological mining condition of overlying TMR was developed to investigate the overburden movement and fracture law, and compare the influence of the occurrence horizon of TMR. The research results show that the movement of overlying rock was greatly affected by the TMR. Before the fracture of TMR, the TMR had shielding and controlling effects on the overlying strata, the maximum vertical and horizontal displacement values of overlying strata were 0.68 m and 0.062 m. After the fracture, the vertical and horizontal displacements suddenly increased to 3.06 m and 0.105 m, with an increase of 350% and 69.4%, respectively, and the higher the occurrence of TMR, the smaller the settlement of the overlying strata, but the wider the settlement span, the smaller the corresponding deformation value of the basin edge (the more difficult the surface to crack). These results are of tremendous importance for the control of rock strata and the revealing of surface deformation mechanism under TMR mining conditions in mines.