• Title/Summary/Keyword: Horizontal flow

Search Result 1,202, Processing Time 0.026 seconds

A Study on Heat Transfer Characteristics in Flow Boiling of Pure Refrigerants and Their Mixtures in Horizontal Tube (수평 전열관내 유동비등하는 순수냉매와 혼합냉매의 열전달 특성에 관한 연구)

  • 임태우;한규일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.144-151
    • /
    • 2003
  • An experimental study was carried out in a uniformly heated horizontal tube to examine heat transfer characteristics of pure refrigerants, R134a and R123, and their mixtures during flow boiling. The flow pattern was also observed through tubular sight glasses with an internal diameter of 10 mm located at the inlet and outlet of the test section. Tests were run at a pressure of 0.6 MPa and in the heat flux ranges of 5~100 kW/$m^2$, vapor Quality 0~100 percent and mass velocity of 150-600 kg/$m^2$s. The observed flow patterns were compared to the flow pattern map of Kattan et al., which predicted well the present data over the entire range of mass velocity employed in this study. Heat transfer coefficients of the mixture were less than the interpolated values between pure fluids both in the low quality region where the nucleate boiling is dominant and in the high quality region where the convective evaporation is dominant.

Heat Transfer Characteristics of Liquid-Solid Suspension Flow in a Horizontal Pipe

  • Ku, Jae-Hyun;Cho, Hyun-Ho;Koo, Jeong-Hwan;Yoon, Suk-Goo;Lee, Jae-Keun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1159-1167
    • /
    • 2000
  • Particles in liquid-solid suspension flow might enhance or suppress the rate of heat transfer and turbulence depending on their size and concentration. The heat transfer characteristics of liquid-solid suspension in turbulent flow are not well understood due to the complexibility of interaction between solid particles and turbulence of the carrier fluid. In this study, the heat transfer coefficients of liquid-solid mixtures are investigated using a double pipe heat exchanger with suspension flows in the inner pipe. Experiments are carried out using spherical fly ash particles with mass median diameter ranging from 4 to $78{\mu}m$. The volume concentration of solids in the slurry ranged from 0 to 50% and Reynolds number ranged from 4,000 to 11,000. The heat transfer coefficient of liquid-solid suspension to water flow is found to increase with decreasing particle diameter. The heat transfer coefficient increases with particle volume concentration exhibiting the highest heat transfer enhancement at the 3% solid volume concentration and then gradually decreases. A correlation for heat transfer to liquid-solid flows in a horizontal pipe is presented.

  • PDF

An Experimental Study on the Two-Phase Flow Pressure Drop Within Horizontal Rectangular Channels with Small Gap Heights (미세 수평 사각유로에서의 2상 유동 압력강하에 관한 실험적 연구)

  • Lee, Han Ju;Lee, Sang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.637-645
    • /
    • 1999
  • Horizontal two-phase flow pressure drop within rectangular channels with small gap heights have been examined experimentally. The gap heights range from 0.4mm to 4mm corresponding to aspect ratios(the channel height divided by the width) from 0.02 to 0.2. Water and air were used as the test fluids with the superficial velocity ranges being 0.03-2.39m/s and 0.05-18.7m/s, respectively. The experimental results In rectangular channels were compared with the Lockhart-Martinelli correlation, which are widely used for conventional round tube. The Lockhart-Martinelli correlation turned out to be Inappropriate to represent the present experimental data. In this respect, considering the aspect ratio and gap-height effects, an empirical correlation on two-phase flow pressure drop was proposed. The proposed correlation successfully covers the bubbly, plug, slug and annular flow regimes.

In-Cylinder Intake Flow Characteristics according to Inlet Valve Angle (흡입 밸브 각도에 따른 실린더 내 흡입 유동 특성 비교)

  • Ohm, In-Yong;Pak, Chan-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.142-149
    • /
    • 2006
  • A PIV(Particle Image Velocimetry) was applied to measure in-cylinder velocity field according to inlet valve angle during intake stroke. Two engines, one is conventional DOHC 4 valve and the other is narrow valve angle, were used to compare real intake flow. The results show that the intake flow pattern of conventional engine is more complicated than that of narrow angle one in horizontal plane and the vertical component of in-cylinder flow is rapidly decayed at the end stage of intake. On the other hand, the flow pattern of narrow angle one is relatively well arranged in horizontal plane and the vertical velocity component remains so strongly that forms large-scale strong tumble. Two engines also form commonly three tumble; two are small and bellow the intake valve and one is large-scale. The center of large scale tumble moves to bottom of cylinder as the vertical velocity increases.

MEASUREMENT OF THE SINGLE AND TWO PHASE FLOW USING A NEWLY DEVELOPED AVERAGE BIDIRECTIONAL FLOW TUBE

  • Yun, Byong-Jo;Euh, Dong-Jin;Kang, Kyunc-Ho;Song, Chul-Hwa;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.595-604
    • /
    • 2005
  • A new instrument, an average BDFT (Birectional Flow Tube), was proposed to measure the flow rate in single and two phase flows. Its working principle is similar to that of the Pilot tube, wherein the dynamic pressure is measured. In an average BDFT, the pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than the static pressure of the flow field due to the suction effect downstream. The proposed instrument was tested in air/water vertical and horizontal test sections with an inner diameter of 0.08m. The tests were performed primarily in single phase water and air flow conditions to obtain the amplification factor(k) of the flow tube in the vertical and horizontal test sections. Tests were also performed in air/water vertical two phase flow conditions in which the flow regimes were bubbly, slug, and churn turbulent flows. In order to calculate the phasic mass flow rates from the measured differential pressure, the Chexal drift-flux correlation and a momentum exchange factor between the two phases were introduced. The test results show that the proposed instrument with a combination of the measured void fraction, Chexal drift-flux correlation, and Bosio & Malnes' momentum exchange model could predict the phasic mass flow rates within a $15\%$ error. A new momentum exchange model was also proposed from the present data and its implementation provides a $5\%$ improvement to the measured mass flow rate when compared to that with the Bosio & Malnes' model.

High-temperature ultrasonic thickness monitoring for pipe thinning in a flow-accelerated corrosion proof test facility

  • Cheong, Yong-Moo;Kim, Kyung-Mo;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1463-1471
    • /
    • 2017
  • In order to monitor the pipe thinning caused by flow-accelerated corrosion (FAC) that occurs in coolant piping systems, a shear horizontal ultrasonic pitch-catch waveguide technique was developed for accurate pipe wall thickness monitoring. A clamping device for dry coupling contact between the end of the waveguide and pipe surface was designed and fabricated. A computer program for multi-channel on-line monitoring of the pipe thickness at high temperature was also developed. Both a four-channel buffer rod pulse-echo type and a shear horizontal ultrasonic waveguide type for high-temperature thickness monitoring system were successfully installed to the test section of the FAC proof test facility. The overall measurement error can be estimated as ${\pm}10{\mu}m$ during a cycle from room temperature to $200^{\circ}C$.

Effective Analysis for Rapidly Varying Flows through Improvement in Spatial Discretization of Horizontal Advection Terms (수평 이류항의 공간이산화 개선을 통한 급변 유동의 효율적 해석)

  • Hong, Namseeg
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.324-330
    • /
    • 2014
  • In this study, the numerical model developed by Hong et al.(2008) was improved to be applied to rapidly varying flows such as the inundation of dry land or flow transitions due to large gradients of the bathymetry. A numerical approximation was applied that was consistent with the conservation of momentum in flow expansions and with the Bernoulli equation in flow contractions. The approximation was second order, but the accuracy reduced to first order near extreme values by the use of a minmod limiter. The modified model was verified by acomparison with the theoretical critical depth of weir, and for sufficiently smooth conditions and a fine grid size, both approximations converged to the same solution. In terms of the grid size, it was more effective at obtaining solutions than the previous model and reproduced the inundation of dry land.

NUMERICAL ANALYSIS FOR UNSTEADY THERMAL STRATIFIED FLOW WITH HEAT TRACING IN A HORIZONTAL CIRCULAR CYLINDER

  • Jeong, Ill-Seok;Song, Woo-Young;Park, Man-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.304-309
    • /
    • 1997
  • A method to mitigate the thermal stratification flow of a horizontal pipe line is proposed by heating external bottom of the pipe with electrical heat tracing. Unsteady two dimensional model has been used to numerically investigate an effect of the external Denting to the thermally stratified flow. The dimensionless governing equations are solved by using the control volume formulation and SIMPLE algorithm. Temperature distribution, streamline profile and Nusselt numbers of fluids and pipe walls with time are analyzed in case of externally heating condition. no numerical result of this study shows that the maximum dimensionless temperature difference between the hot and the cold sections of pipe inner wall is 0.424 at dimensionless time 1,500 ann the thermal stratification phenomena is disappeared at about dimensionless time 9,000. This result means that external heat tracing can mitigate the thermal stratification phenomena by lessening $\Delta$ $T_{ma}$ about 0.1 and shortening the dimensionless time about 132 in comparison with no external heat tracing.rnal heat tracing.

  • PDF

Numerical Analysis for Unsteady Thermal Stratified Turbulent Flow in a Horizontal Circular Cylinder

  • Ahn, Jang-Sun;Ko, Yong-Sang;Park, Byeong-Ho;Youm, Hag-Ki;Park, Man-Heung
    • Nuclear Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.405-414
    • /
    • 1996
  • In this paper, the unsteady 2-dimensional turbulent flow model for thermal stratification in a pressurizer surge line of PWR plant is proposed to numerically investigate the heat transfer and flow characteristics. The turbulence model is adapted to the low Reynolds number K-$\varepsilon$ model (Davidson model). The dimensionless governing equations are solved by using the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm. The results are compared with simulated experimental results of TEMR Test. The time-dependent temperature profiles in the fluid and pipe nil are shown with the thermal stratification occurring in the horizontal section of the pipe. The corresponding thermal stresses are also presented. The numerical result for thermal stratification by the outsurge during heatup operation of PWR shows that the maximum dimensionless temperature difference is about 0.83 between hot and cold sections of pipe well and the maximum thermal stress is calculated about 322MPa at the dimensionless time 28.5 under given conditions.

  • PDF

Interference Effects on the Performance of Multi-arrayed HAT TCP Devices (복합배치 수평축 조류발전 로터의 간섭성능 고찰)

  • Jo, Chul-Hee;Lee, Kang-Hee;Yim, Jin-Young;Rho, Yu-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.36-40
    • /
    • 2010
  • Tidal current power system is the energy converter which converts the kinetic energy of tidal stream into electric energy. The performance of the rotor which initially converts the energy is determined by various design factors and it should be optimized by the ocean environment of the field. Flow direction changes due to rise and fall of the tides, but horizontal axis turbine is very sensitive to direction of flow. To investigate the rotor performance considering the interaction problems with incidence angle of flow, series of experiments have been conducted. The results and findings are summarized in the paper.