• Title/Summary/Keyword: Horizontal flow

Search Result 1,202, Processing Time 0.022 seconds

Study on Film-Boiling Heat Transfer of Subcooled Turbulent Liquid Film Flow on Horizontal Plate (수평 과냉 . 난류액막류의 막비등 열전달에 관한 연구)

  • 김영찬;서태원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.835-842
    • /
    • 2000
  • Film boiling heat transfer of the subcooled turbulent liquid film flow on a horizontal plate was investigated by theoretical and experimental studies. In the theoretical analysis, by solving the integral energy and momentum equations analytically, some generalized expressions for Nusselt number was deduced. Next, by comparing the deduced equations with the experimental data on the turbulent film boiling heat transfer of the subcooled thin liquid film flow, the semi-empirical relation between the Nusselt number based on the modified heat transfer coefficient and the Reynolds number was obtained. The correlating equation was very similar to that of the turbulent heat transfer in a single phase flow, and it was found that the heat transfer was dissipated to increase the liquid temperature.

  • PDF

PREDICT10N OF THE ONSET OF SLUG FLOW IN NEARLY HORIZONTAL AIR-WATER COUNTERCURRENT FLOW

  • Yu, Seon-Oh;Chun, Moon-Hyun;Kim, Yang-Seok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.368-373
    • /
    • 1997
  • The transition from a statified wavy to a slug flow has been analyzed considering the mechanistic forces acting on the wave crest in a nearly horizontal air-water countercurrent flow. To verify the results of the analysis, a series of experiments have been performed changing the inclination angle of the test section. Comparisons of the theoretical predictions with experimental data show a good agreement and the results show that the present model gives similar results of Taitel and Dukler's in the case of inclined pipes. However, at high superficial liquid velocity, the results of present work agree more closely with data than that of Taitel and Dukler's. Also, predictions of the present model gives a very close agreement with the experimental data for various tube sizes obtained by others.

  • PDF

A numerical study of design condition for horizontal electronic circuit boards flow and heat transfer characteristics (유동과 열전달 특성을 고려한 수평 전자회로 기판의 설계조건에 관한 수치적 연구)

  • 전운학;이행남;김현모
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.76-87
    • /
    • 1992
  • Flow and heat transfer characteristics in a horizontal electronic circuit board are studied numerically. The board has the arrays of heated blocks and the spaces between the plates and blocks are changed. Air in used as cooling fluid, of which prandt1 number is 0.7. The velocity distributions, temperature distributions, Nusselt numbers and dimensionless friction factors are obtained on the spaces between the plates and the blocks, for the cases of Rayleigh number, 0 and 10$^{5}$ . When Rayleigh number is so large, such as 10$^{5}$ , that the effect of bouyancy is not negligible, fluid friction and heat transfer is increased more than those of forced convection. This may be caused by the generation of secondary flow on the cross section of primary flow. The effect of bouyancy is of the most efficient, when the space of blocks is about block-width and the space of plates is about 1.7 times of block-height.

  • PDF

Mixed Convection in a Horizontal Annulus with a Rotating Cylinder (하나의 실린더가 회전하는 수평 환형 공간에서의 혼합 대류)

  • Yoo Joo-Sik;Ha Dae-Hong
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.1-9
    • /
    • 2001
  • Mixed convection in a horizontal annulus is considered, and the effect of a forced flow on the natural convective flow is investigated. The inner cylinder is hotter than the outer cylinder, and the outer cylinder is rotating with constant angular velocity with its axis at the center of the annulus. The unsteady streamfunction-vorticity equation is solved with a finite difference method. For the fluid with Pr=0.7, there appear flows with two eddies, one eddy, or no eddy according the Rayleigh and Reynolds numbers. The rotation of the outer cylinder reduces the heat transfer rate at the wall of the annulus. The oscillatory multicellular flow of a low Prandtl number fluid with Pr=0.01 can be effectively suppressed by the forced flow.

  • PDF

OSCILLATORY THERMAL CONVECTION IN A HORIZONTAL ANNULUS (수평 환형 공간에서의 진동하는 열대류)

  • Yoo Joo-Sik
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.49-55
    • /
    • 2006
  • This study investigates the oscillatory thermal convection of a fluid with Pr=0.02 in a wide-gap horizontal annulus with constant heat flux inner wall. When Pr=0.02, dual steady-state flows are not found. After the first Hopf bifurcation from a steady to a time-periodic flow, five successive period-doubling bifurcations are recorded before chaos. The power spectrum shows the $period-2^4\;and\;2^5$ flows clearly, and a window of period $3{\times}2^3$ flow is found in the chaotic regime. The approximate value of the Feigenbaum number for the last three period-doubling bifurcations is 4.76. The transition route to chaos of the present simulations is consistent with the period-doubling route of Feigenbaum.

Flow Boiling Heat Transfer in a Horizontal Rectangular Microchannel (수평 사각 마이크로채널 내에서의 유동 비등 열전달)

  • Huh, Cheol;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1043-1050
    • /
    • 2006
  • An experimental investigation was performed to study flow boiling heat transfer of deionized water in a microchannel. Measurement and evaluation of boiling heat transfer coefficients were carried out using a single horizontal rectangular microchannel having a hydraulic diameter of $100{\mu}m$. Tests were performed for mass fluxes of 90, 169 and 267 $kg/m^2$s and heat fluxes of 200-700 $kW/m^2$. Test results showed that the measured boiling heat transfer coefficients had no dependence on mass flux and vapor quality. Most macro-channel correlations of boiling heat transfer coefficient did not provide reliable predictions.

지하수 유동 모텔을 이용한 지하수위 변동법의 적용성 분석

  • 구민호;이대하
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.28-31
    • /
    • 2002
  • The water level fluctuation (WLF) method is a conventional method for quantifying groundwater recharge by multiplying the specific yield to the water level rise. A 2-D unconfined flow model with a time series of the recharge rate is developed. It is used for elucidating the errors of the WLF method which is implicitly based on the tank model where the horizontal flow in the saturated zone is ignored. Simulations show that the recharge estimated by the WLF method is underestimated for the observation well near the discharge boundary. This is due to the fact that the hydraulic stress resulting from the recharge is rapidly dissipating by the horizontal flow near the discharge boundary Simulations also reveal that the recharge was significantly underestimated with increase in the hydraulic conductivity and the recharge duration, and decrease in the specific yield.

  • PDF

Boundary layer analysis of persistent moving horizontal needle in Blasius and Sakiadis magnetohydrodynamic radiative nanofluid flows

  • Krishna, Penem Mohan;Sharma, Ram Prakash;Sandeep, Naramgari
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1654-1659
    • /
    • 2017
  • The boundary layer of a two-dimensional forced convective flow along a persistent moving horizontal needle in an electrically conducting magnetohydrodynamic dissipative nanofluid was numerically investigated. The energy equation was constructed with Joule heating, viscous dissipation, uneven heat source/sink, and thermal radiation effects. We analyzed the boundary layer behavior of a continuously moving needle in Blasius (moving fluid) and Sakiadis (quiescent fluid) flows. We considered Cu nanoparticles embedded in methanol. The reduced system of governing Partial differential equations (PDEs) was solved by employing the Runge-Kutta-based shooting process. Computational outcomes of the rate of heat transfer and friction factors were tabulated and discussed. Velocity and temperature descriptions were examined with the assistance of graphical illustrations. Increasing the needle size did not have a significant influence on the Blasius flow. The heat transfer rate in the Sakiadis flow was high compared with that in the Blasius flow.

Conjugated heat transfer on convection heat transfer from a circular tube in cross flow (원관 주위의 대류 열전달에 대한 복합 열전달)

  • 이승홍;이억수;정은행
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.523-534
    • /
    • 1998
  • The convection heat transfer on horizontal circular tube is studied as a conjugated heat transfer problem. With uniform heat generation in a cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer are investigated for the case of forced convection around horizontal circular tube in cross flow of air and water. Non-dimensional conjugation parameter $ K^*$ which can be deduced from the governing energy differential equation should be used to express the effect of circumferential wall heat conduction. Two-dimensional temperature distribution$ T({\gamma,\theta})$ is presented. The influence of circumferential wall heat conduction is demonstrated on graph of local Nusselt number.

  • PDF

Pressure Drop in Two-Phase Flow Boiling of R134a, R123 and Their Mixture in Horizontal Tube

  • Lim, Tae-Woo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.2
    • /
    • pp.70-78
    • /
    • 2004
  • An experimental study on the pressure drop during flow boiling for pure refrigerants Rl34a and R123, and their mixture was carried out in a uniformly heated horizontal tube. Tests were run at a pressure of 0.6㎫ and in the ranges of heat flux 5-50㎾/$m^2$, vapor quality 0-100 percent and mass velocity of 150-600 kg/$m^2$s. Generally, the two-phase frictional multiplier is used to predict the frictional pressure drop during the two-phase flow boiling. The obtained results have been compared to the existing various correlations for the two-phase multiplier. Also, the frictional pressure drop was compared to a few available correlations; The Lockhart-Martinelli correlation considerally overpredicted the frictional pressure drop data for mixture as well as pure components in the entire mass velocity ranges employed in the present study, while the Chisholm correlation underpredicted the present data. The Friedel correlation was found to satisfactorily correlate the frictional pressure drop data except for a low quality region.