• Title/Summary/Keyword: Horizontal coefficient of permeability

Search Result 34, Processing Time 0.022 seconds

Stability Analysis of Geocell Reinforced Slope During Rainfall (강우 시 지오셀 보강 사면의 안정성 평가에 관한 연구)

  • Shin, Eun-Chul;Kim, Jang-Ill
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.33-41
    • /
    • 2017
  • In this study, the increment effect of safety factor according to increasing of horizontal permeability coefficient is analyzed when geocell is installed on the slope for protection. To evaluate the horizontal permeability and reinforcement effect, the laboratory tests such horizontal permeability test were conducted. According to the laboratory test results, as the porosity rate of geocell increases, the coefficient of horizontal permeability is also increased. And also, regardless of the different types of filled materials, the coefficient of horizontal permeability is improved in a geocell reinforced ground compare with the non-reinforced ground. Laboratory test results and the rainfall intensity were applied to the numerical modeling of slope for seepage analysis and stability analysis of slope by using Soilworks, numerical analysis program. As a result of the slope stability analysis, it is confirmed that the installed geocell on the slope facilitates the drainage of water on the surface of slope. Hence, the ground water elevation is suppressed. Therefore, the safety factor of the slope is increased by the increasing of the internal friction angle, apparent cohesion, and coefficient of horizontal permeability by reinforcing the slope with geocell.

Utilization of Recycled Aggregates and Crushed Stone as Horizontal Drains in Soft Ground (수평 배수재로서 순환골재와 쇄석의 활용 방안)

  • Lee, Dal-Won;Lim, Jin-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.111-123
    • /
    • 2010
  • In this study, laboratory model test on utilization of recycled aggregates and crushed stone as horizontal drains to use alternative material of sand in soft ground is practiced. The coefficient of permeability of the recycled aggregates and crushed stone showed largely 1.2~5.1 times and 2.0~3.3 times greater than sand, respectively. The horizontal coefficient of permeability in case of installing the horizontal perforated drain pipe showed largely 1.9~6.8 times more than the case of not installing. The drainage distance showed 1.7~1.8 times greater than sand. When a degree of consolidation is 90 %, there is no delay of consolidation in SCP and PVD improvement sections. Therefore, it is proven that the field applicability is excellent. Also, the suitable quality management criterion is presented to make use of a horizontal drains in soft ground on the basis of analysis of the physical and environmental characteristics.

Characteristics of Coefficient of Consolidation in Horizontal Direction of Korean Marine clays (국내해성점토의 수평압밀계수 특성)

  • Jun, Sang-Hyun;Kim, Chang-Seop;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.71-79
    • /
    • 2008
  • Reports about coefficients of consolidation in horizontal direction of marine clays located at seven different sites on western and southern coast area in Korea were reviewed and characteristics of them were investigated. As results of analyses, for relation between the depth of ground and coefficients, any trend and correlation between them can not be found since they are more influenced by the nature of geological formation rather than the depth of ground. Dissipation time t50, one of important factors in estimating value of coefficient of consolidation in horizontal direction, was found to be quite related to them. For the correlation between the maximum pore pressure developed and coefficients, coefficient of consolidation in the horizontal direction tend to decrease with increase of the maximum pore pressure whereas the ground water level or static pore pressure do not have any specific correlation with those coefficients. Values of coefficient tends to increase with values of liquid limit, plastic limit and plastic index and thus they are found to be directly influenced by the contents of fines. Values of coefficient of consolidation in horizontal direction are also increased with increases of permeability in horizontal direction and coefficient of consolidation in vertical direction. They were highly correlated between coefficient of consolidation and permeability in horizontal direction while values of coefficient of consolidation in horizontal direction have a relatively low correlation with values of coefficient of consolidation in horizontal direction. Sometimes, coefficient of consolidation in horizontal direction obtained from field tests were estimated 2-3 times greater than those from laboratory tests.

  • PDF

A Study on the Horizontal Consolidation and Permeability Characteristics of Decomposed Mudstone Soil in Pohang (이암풍화토의 횡방향압밀 및 투수특성)

  • 김영수;김기영;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.31-42
    • /
    • 2000
  • Consolidation and permeability are major engineering properties of soil. In clay, coefficient of permeability and consolidation can be calculated by incremental loading consolidation test. However, it is known that the incremental loading test has several deficiencies including long testing time, non-uniform stress state, very soft clay and problem of back pressure saturation. Specially, it is not performed with horizontal consolidation test. Several methods have been proposed for obtaining reliable values of $C_v$. Among these, the square root of time-fitting method proposed by Taylor(1948) and logarithm of time-fitting method, also called Casagrande's method, are used extensively in soil engineering practice. But these methods are not amenable for the absence of initial linear portion and have the difficulties involved in distinguishing secondary compression from primary compression. Rowecell consolidation tests were carried out in this study with different trimming axis and sample size. The results were compared with those of other methods; Casagrande,$Taylor,\; Casagrande,\; Hyperbolic,\; \delta/t-logt$. From the results, we explained a relationship between horizontal coefficient of permeability and void ratio was obtained. Finally, the directly measured horizontal coefficient of permeability obtained by using the Rowecell was compared with the permeability derived indirectly from the consolidation test result.

  • PDF

Shallow Failure Characteristics of Weathered Granite Soil Slope in accordance with the Rainfall Infiltration (강우침투에 따른 화강풍화토 사면의 얕은파괴 특성)

  • Kim, Sun-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2810-2818
    • /
    • 2009
  • In order to examine the characteristic of shallow failure in cut slopes composed of weathered granite soil, this study calculated critical permeability coefficient according to rainfall characteristic in Korea, performed stability analysis according to the representative physical properties of weathered granite soil distributed in Korea such as horizontal distance to the failure surface of cut slope, slope inclination, slope height, and the depth of wetting by rainfall, and analyzed the results. In the results of analyzing critical permeability coefficient, when the local rainfall characteristic was considered, the maximum critical permeability coefficient was $7.16{\times}10^{-4}cm/sec$. We judged that shallow failure according to wetting depth should be considered when rainfall below the critical rainfall intensity lasts longer than the minimum rainfall duration in cut slopes composed of weathered granite soil, which had a critical permeability coefficient lower than the maximum critical permeability coefficient. Furthermore, using simulated failure surface, this study could understand the characteristic of shallow failure in cut slopes based on the change in slope safety factor according to horizontal distance, wetting depth, and strength parameter.

Characteristics of the Smear Zone by Vertical Drain of Low Plasticity on Soft Ground (저소성 연약지반에서의 스미어 존 특성 평가)

  • Kang, Yun;Baek, Sungchul;Kim, Hongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.3
    • /
    • pp.27-33
    • /
    • 2007
  • The vertical drain method recently being used in Korea is one of the popular soft ground improvement methods, and it is divided into the sand drain method, the pack drain method, the paper drain method, and the PBD method according to the drainage. However, these methods generate the disturbed zone called the smear zone when the drainage is penetrated into the in-situ ground. The characteristics of the smear zone generated cause the problems that the coefficient of permeability decreases, and then the consolidation time in the design becomes longer than expected. Even though the coefficient of horizontal consolidation and the coefficient of permeability in the smear zone are very important design factors directly influencing the degree of consolidation, in the existing studies, these coefficients have been empirically derived by the coefficient of vertical consolidation and used for the design. However, in case that these coefficients derived by the coefficient of vertical consolidation are applied to the actual design, a loss of the duration of construction and a loss of economical efficiency can be happened because of the inaccuracy of the coefficient of horizontal consolidation and the coefficient of permeability. Hence, in this study, in order to understand such influence, the laboratory test was carried out so as to reasonably determine the coefficient of permeability and the coefficient of consolidation in diverse ground conditions. Then, the range of smear effect on clay and silt was estimated with monitoring data through the laboratory test.

  • PDF

Clogging behavior of recycled aggregates and crushed stone as horizontal drains in soft ground (연약지반에서 수평배수재용 순환골재와 쇄석의 막힘 거동)

  • Lee, Dal-Won;Noh, Jae-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.253-260
    • /
    • 2013
  • In this study, laboratory model test carried out to present the suitable range of particle size distribution and clogging behavior of recycled aggregates and crushed stone as horizontal drains in soft ground. The recycled aggregates and crushed stone showed clogging phenomenon because the top fill material and bottom clay inflow into the horizontal drains. The pp mat was the most effective method to minimize clogging phenomenon. The horizontal coefficient of permeability in case of installing the pp mat showed largely 2.1 times more than the case of not installing. When the pp mat is not installing, the thickness of fine grained soil inflow into the horizontal drains showed 6.7~13.3% range in top fill material and 3.3~6.7% range in bottom clay. Overall, the reduction of the discharge capacity by fine grained soil inflow showed small in recycled aggregates and crushed stone. Also, the appropriate criterion range of particle size distribution is presented to make use of a horizontal drains in soft ground on the basis of laboratory test.

Direct Application of CPTu Result for Consolidation Analysis (PCPT 소산결과를 이용한 압밀해석)

  • Kang, Beong-Joon;Cho, Sung-Hwan;Seo, Kyung-Bum;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.715-719
    • /
    • 2009
  • In this study, a method to predict the consolidation behavior of soft clays and marine clays was developed by combining the equation of Terzaghi's 1-dimensional consolidation and CPTu dissipation. The special attention was given to the consolidation anisotropy due to the difference between 1-D consolidation and radial consolidation of CPTu dissipation. The analysis combining two equations enables direct application of CPTu results. And above all it doesn't require to sample undisturbed specimens and determine consolidation coefficient which is both costly and time consuming and often contains measuring error. It is also advantageous that CPTu test can be carried out any position and any depth. Clays typically have a greater horizontal permeability, $k_h$, than vertical permeability, $k_v$, and the coefficient of consolidation in the horizontal direction is generally higher than the vertical direction. Various data of horizontal and vertical consolidation coefficient ratio were collected and analyzed to develop and verify the method.

  • PDF

Natural Convection for Air-Layer between Body Skin and Clothing with Considering Coefficient of Permeability (투과계수를 고려한 의복과 인체 사이의 공기층에서 자연대류 특성)

  • 지명국;배강렬;정효민;정한식;추미선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1282-1287
    • /
    • 2001
  • This study presents the numerical analysis of natural convection of a micro- environments with air permeability in the clothing air-layer. As a numerical model the clothing air layer of shoulder and arm were adopted. Finite volume method for two-dimensional laminar flow was used for the analysis of flow and thermal characteristics of velocity, temperature and concentration in the air layer between body and clothing. As temperature boundary conditions, a body skin has a high temperature with $34^{\circ}C$ and the environmental temperatures are 5, 15 and $25^{\circ}C$ for various permeability coefficients. The distributions of concentration, temperature and velocity are shown that two large cells form at horizontal and vertical air layer, respectively. As the temperature difference between body skin and environment decreases, the heat transfer is decreased rapidly.

  • PDF

An Estimation of Smear Zone Induced by Vertical Drain Construction Based on the Laboratory Model test (실내모형실험을 통한 연직배수재 타설에 의한 스미어존의 평가)

  • Kim, Hong-Taek;Han, Yeon-Jin;Kim, Seong-Wook;Hwang, Jeong-Soon
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.279-282
    • /
    • 2007
  • When ground disturbance takes place due to vertical drain construction through mandrel penetration, that affects excess pore water pressure dissipation time because of soft clay coefficient of permeability decreasing. Eventually, consolidation time is influenced. In this research, we measure process of excess pore water pressure dissipation before and after each other different shape's mandrel penetration through model test, and calculates range of smear zone, coefficient of permeability and horizontal coefficient of consolidation after model test. Using of test result, we grasp a degree of drainage ability drop resulting from vertical drain construction.

  • PDF