• 제목/요약/키워드: Horizontal bearing capacity

검색결과 156건 처리시간 0.03초

성토지반에 타입된 H형강 말뚝의 지지거동 (Bearing Capacity of Driven H-Piles in Embankment)

  • 박영호;정경자;김성환;유성근;이재혁;박종면
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.173-182
    • /
    • 2000
  • To find axial and lateral responses of impact-driven H piles in embankment(SM), the H piles are instrumented with electric strain gages, dynamic load test is performed during driving, and then the damage of strain gages is checked simultaneously. Axially and laterally static load tests are performed on the same piles after one to nine days as well. Then load-settlement behavior is measured. Furthermore, to find the set-up effect in H pile, No. 4, 16, 26, and R6 piles are restriked about 1, 2, and 14 days after driving. As results, ram height and pile capacity obtained from impact driving control method become 80cm and 210.3∼242.3ton, respectively. At 15 days after driving, allowable bearing capacity by CAPWAP analysis, which 2.5 of the factor of safety is applied for ultimate bearing capacity, increases 10.8%. Ultimate bearing capacity obtained from axially static load test is 306∼338ton. This capacity is 68.5∼75.7% at yield force of pile material and is 4∼4.5 times of design load. Allowable bearing capacity using 2 of the factor of safety is 153∼169ton. Initial stiffness response of the pile is 27.5ton/mm. As the lateral load increases, the horizontal load-settlement behaves linearly to which the lateral load reaches up to 17ton. This reason is filled with sand in the cavity formed between flange and web during pile driving. As the result of reading with electric strain gages, flange material of pile is yielded at 19ton in horizontal load. Thus allowable load of this pile material is 9.5ton when the factor of safety is 2.0. Allowable lateral displacement of this pile corresponding to this load is 23∼36mm in embankment.

  • PDF

Shear mechanism and bearing capacity calculation on steel reinforced concrete special-shaped columns

  • Xue, J.Y.;Chen, Z.P.;Zhao, H.T.;Gao, L.;Liu, Z.Q.
    • Steel and Composite Structures
    • /
    • 제13권5호
    • /
    • pp.473-487
    • /
    • 2012
  • An experimental study was performed to investigate the seismic performance of steel reinforced concrete (SRC) special-shaped columns. For this purpose, 17 steel reinforced concrete special-shaped column specimens under low-cyclic reversed load were tested, load process and failure patterns of the specimens with different steel reinforcement were observed. The test results showed that the failure patterns of these columns include shear-diagonal compression failure, shear-bond failure, shear-flexure failure and flexural failure. The failure mechanisms and characteristics of SRC special-shaped columns were also analyzed. For different SRC special-shaped columns, based on the failure characteristics and mechanism observed from the test, formulas for calculating ultimate shear capacity in shear-diagonal compression failure and shear-bond failure under horizontal axis and oblique load were derived. The calculated results were compared with the test results. Both the theoretical analysis and the experimental results showed that, the shear capacity of T, L shaped columns under oblique load are larger than that under horizontal axis load, whereas the shear capacity of +-shaped columns under oblique load are less than that under horizontal axis load.

Seismic bearing capacity of shallow embedded strip footing on rock slopes

  • Das, Shuvankar;Halder, Koushik;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • 제30권2호
    • /
    • pp.123-138
    • /
    • 2022
  • Present study computes the ultimate bearing capacity of an embedded strip footing situated on the rock slope subjected to seismic loading. Influences of embedment depth of strip footing, horizontal seismic acceleration coefficient, rock slope angle, Geological Strength Index, normalized uniaxial compressive strength of rock mass, disturbance factor, and Hoek-Brown material constant are studied in detail. To perform the analysis, the lower bound finite element limit analysis method in combination with the semidefinite programming is utilized. From the results of the present study, it can be found that the magnitude of the bearing capacity factor reduces quite substantially with an increment in the seismic loading. In addition, with the increment in slope angle, further reduction in the value of the bearing capacity factor is observed. On the other hand, with an increment in the embedment depth, an increment in the value of the bearing capacity factor is found. Stress contours are presented to describe the combined failure mechanism of the footing-rock slope system in the presence of static as well as seismic loadings for the different embedment depths.

점성토 지반에 설치된 Tripod 버켓기초의 지지거동 분석 (Analysis of the Bearing Behavior of a Tripod Bucket Installed in Clay)

  • 김성렬;정재욱;오명학;권오순
    • 대한토목학회논문집
    • /
    • 제32권3C호
    • /
    • pp.105-111
    • /
    • 2012
  • 해상 풍력발전기의 기초로 사용되는 버켓기초에는 수평하중과 모멘트가 크게 작용한다. 그러므로, 수평하중과 모멘트에 대한 지지력을 증가시키기 위해 3개의 단일 버켓기초를 묶은 Tripod 버켓기초가 적용되고 있다. 본 연구는 ABAQUS(2010) 해석을 수행하여 점토 지반에 근입된 Tripod 기초의 무리효과와 지지력을 분석하였다. 변수연구를 위해 버켓간 간격비 S/D(S=버켓과 타워중심간의 거리, D=버켓 직경)와 근입깊이비 L/D(L=버켓의 지반 근입깊이)를 변화시키며 해석을 수행하였다. 구성모델은 정규압밀 점토지반에 대해 Tresca 항복기준을 적용한 탄성-완전 소성 모델, 그리고 버켓기초에 대해 탄성모델을 적용하였다. 하중조건은 절점의 변위를 증가시키는 방법으로 연직, 수평 그리고 모멘트 하중을 재하하였다. 해석결과로부터, 단일 버켓기초와 Tripod 기초의 지지거동과 지지력을 비교한 후 단일 버켓의 지지력을 이용하여 Tripod 기초의 지지력을 산정하는 방법을 제안하였다.

지지력 계수 $N_{\gamma}$의 수치적 산정법 (Numerical Computation of Bearing Capacity Factor $N_{\gamma}$)

  • 김원철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.565-573
    • /
    • 2004
  • This study is to present explicit analytical expressions for calculating bearing capacity factor $N_{\gamma}$, to provide results of the numerical computation instead of the graphical method. In this study, $N_{\gamma}$ is proposed in the critical failure surface on assumption that the center of log spiral in the radial shear zone can be located at the any points of around footing. The critical failure surface is one which yields minimum passive pressure $P_{\gamma}$ on the radial shear zone from the family of log spirals accoding to change of the center of log spiral. This study adoptes Terzaghi's bearing capacity principle(e.g., Prandtl's mechanism, limit equilibrium equation, superposition principle) but the soil wedge in an elastic zone makes angle $45^{\circ}+{\phi}/2$ with the horizontal and the location of the log spiral's center.

  • PDF

지반조건의 변화가 개단강관말뚝의 거동에 미치는 영향 (Effects of Soil Conditions on the Behavior of Open -Ended Steel Pipe Pile)

  • 백규호;이종섭;이승래
    • 한국지반공학회지:지반
    • /
    • 제9권3호
    • /
    • pp.23-34
    • /
    • 1993
  • 지반조건이 개단강관말뚝의 거동에 미치는 영향을 규명하기 위하여 응력상태와 상대밀도의 조절이 가능한 토조내에 포설된 모래지반에서 모형말뚝실험이 수행되었다. 모형말뚝은 개단강관 말뚝의 각 부분에 작용하는 지지력을 분리측정하기 위하여 직경이 다른 두개의 파이프로 만들어졌다. 실험결과에 의하면 모래지반에 타입된 개단말뚝의 폐색정도와 관입저항력은 지반의 수직응력보다는 수평응력과 상대밀도에 의하여 좌우되었으며, 관내토지지력과 외주면마찰력, 그리고 전체 지지력도 수직응력보다는 수평응력과 상대밀도에 의하여 주로 영향받는 것으로 나타났다. 또 한 말뚝 외벽에 작용하는 수평응력은 원지반의 응력상태와는 관계없이 조밀한 지반의 경우에는 원지반의 수평응력보다 크게, 보통상태의 지반에서는 원지반과 비슷하게, 그리고 매우 느슨한 지반에서는 원지반보다 작게 측정되었다. 원지반의 수평응력에 대한 말뚝 설치후의 말뚝 외벽에 작용하는 수평응력의 비는 주어진 모래지반의 경우 원지반의 수평응력과 관계없이 상대밀도에 따라 일정한 값으로 나타났다.

  • PDF

폐색정도를 고려한 개단말뚝의 지지력 산정 (Estimation of Bearing Capacity for Open-Ended Pile Considering Soil Plugging)

  • 백규호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.397-404
    • /
    • 2002
  • The bearing capacity of open-ended piles is affected by the degree of soil plugging, which is quantified by the IFR. There is not at present a design criterion for open-ended piles that explicitly considers the effect of IFR on pile load capacity In order to investigate this effect, model pile load tests using a calibration chamber were conducted on instrumented open-ended piles. The results of these tests show that the IFR increases with increasing relative density and increasing horizontal stress of soils. The unit base and shaft resistances decrease with increasing IFR. Based on the results of the model pile tests, new empirical relations for base load capacity and shaft load capacity of open-ended piles are proposed. In order to check the accuracy of predictions made with the proposed equations, the equations were applied to the full-scale pile load test preformed in this study, Based on the comparisons with the pile load test results, the proposed equations appear to produce satisfactory predictions.

  • PDF

Experimental evaluation of back-to-back anchored walls by double-plates anchors

  • Amir, Najafizadeh;AmirAli, Zad
    • Geomechanics and Engineering
    • /
    • 제31권6호
    • /
    • pp.599-614
    • /
    • 2022
  • One of the methods of stabilizing retaining walls, embankments, and deep excavations is the implementation of plate anchors (like the Geolock wall anchor systems). Back-to-back Mechanically Stabilized Earth (BBMSE) walls are common stabilized earth structures that can be used for bridge ramps. But so far, the analysis of the interactive behavior of two back-to-back anchored walls (BBAW) by double-plates anchors (constructed closely from each other and subjected to the limited-breadth vertical loading) including interference of their failure and sliding surfaces has not been the subject of comprehensive studies. Indeed, in this compound system, the interaction of sliding wedges of these two back-to-back walls considering the shear failure wedge of the foundation, significantly impresses on the foundation bearing capacity, adjacent walls displacements and deformations, and their stability. In this study, the effect of horizontal distance between two walls (W), breadth of loading plate (B), and position of vertical loading was investigated experimentally. In addition, the comparison of using single and equivalent double-plate anchors was evaluated. The loading plate bearing capacity and displacements, and deformations of BBAW were measured and the results are presented. To evaluate the shape, form, and how the critical failure surfaces of the soil behind the walls and beneath the foundation intersect with one another, the Particle Image Velocimetry (PIV) technique was applied. The experimental tests results showed that in this composite system (two adjacent-loaded BBAW) the effective distance of walls is about W = 2.5*H (H: height of walls) and the foundation effective breadth is about B = H, concerning foundation bearing capacity, walls horizontal displacements and their deformations. For more amounts of W and B, the foundation and walls can be designed and analyzed individually. Besides, in this compound system, the foundation bearing capacity is an exponential function of the System Geometry Variable (SGV) whereas walls displacements are a quadratic function of it. Finally, as an important achievement, doubling the plates of anchors can facilitate using concrete walls, which have limitations in tolerating curvature.

수치해석에 의한 터널 복공의 역학적 거동 및 균열 특성에 관한 연구 (On Mechanical Behavior and Cracking Characteristics of Tunnel Lining by Numerical Analysis)

  • 이대혁;김재순;이희근;김성운
    • 터널과지하공간
    • /
    • 제8권2호
    • /
    • pp.146-156
    • /
    • 1998
  • Nemerical algorithms were developed to analyze the behavior of the double lining as well as ground mass separately or simultaneously. A lining interface element was especially developed, verified and applied to the study on the coupled interaction of shotcrete and the concrete lining. It could be known fro parameter studys on double lining support systems that as the contact surface between shotcrete and concrete lining was rougher, the more decreased bearing capacity against the cracking of the system. If the thickness of the shotcrete increased, the bearing capacity of the double lining also increased linearly with the thickness. If the thickness of the concrete lining increased, the bearing capacity of the double lining had the relationship of the characteristic S-shape of a sigmoid function with the thickness. When the thickness increased over a given value, it was not useful to increase more the thickness because bearing capacity had no remarkable change. It could be concluded that the behavior of the shotcrete and concrete lining was generally reversed before and after the ratio of horizontal to vertical earth preassure of 1.0 and 0.5 respectively. Therefore, we could guess that the movement which two shotcrete and concrete lining deflect toward each other around the crown caused a friction between two linings and thus this disadvantageous effect could contribute to reducing the bearing capacity against the cracking.

  • PDF

Seismic experiment and analysis of rectangular bottom strengthened steel-concrete composite columns

  • Hui, Cun;Zhu, Yanzhi;Cao, Wanlin;Wang, Yuanqing
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.599-621
    • /
    • 2016
  • In order to study the working mechanism of rectangular steel-concrete composite columns subjected to compression-bending load and further determine the seismic performance index, a bottom strengthened rectangular steel reinforced concrete (SRC) column with concealed steel plates and a bottom strengthened rectangular concrete filled steel tube (CFST) columns were proposed. Six column models with different configurations were tested under horizontal low cyclic loading. Based on the experiments, the load-bearing capacity, stiffness and degradation process, ductility, hysteretic energy dissipation capacity, and failure characteristics of the models were analyzed. The load-bearing capacity calculation formulas for a normal section and an oblique section of bottom strengthened rectangular steel-concrete composite columns were pesented and a finite element (FE) numerical simulation of the classical specimens was performed. The study shows that the load-bearing capacity, ductility, and seismic energy dissipation capacity of the bottom strengthened rectangular steel-concrete composite columns are significantly improved compared to the conventional rectangular steel-concrete composite columns and the results obtained from the calculation and the FE numerical simulation are in good agreement with those from the experiments. The rectangular steel-concrete composite column with bottom strengthened shows better seismic behavior and higher energy dissipation capacity under suitable constructional requirements and it can be applied to the structure design of high-rise buildings.