• 제목/요약/키워드: Horizontal air-jet

검색결과 20건 처리시간 0.027초

적운 모수화 방안이 고해상도 집중호우 예측에 미치는 영향 (Impact of Cumulus Parameterization Schemes with Different Horizontal Grid Sizes on Prediction of Heavy Rainfall)

  • 이재복;이동규
    • 대기
    • /
    • 제21권4호
    • /
    • pp.391-404
    • /
    • 2011
  • This study investigates the impact of cumulus parameterization scheme (CPS) with different horizontal grid sizes on the simulation of the local heavy rainfall case over the Korean Peninsula. The Weather Research and Forecasting (WRF)-based real-time forecast system of the Joint Center for High-impact Weather and Climate Research (JHWC) is used. Three CPSs are used for sensitivity experiments: the BMJ (Betts-Miller-Janjic), GD (Grell-Devenyi ensemble), and KF (Kain-Fritsch) CPSs. The heavy rainfall case selected in this study is characterized by low-level jet and low-level transport of warm and moist air. In 27-km simulations (DM1), simulated precipitation is overestimated in the experiment with BMJ scheme, and it is underestimated with GD scheme. The experiment with KF scheme shows well-developed precipitation cells in the southern and the central region of the Korean Peninsula, which are similar to the observations. All schemes show wet bias and cold bias in the lower troposphere. The simulated rainfall in 27-km horizontal resolution has influence on rainfall forecast in 9-km horizontal resolution, so the statements on 27-km horizontal resolution can be applied to 9-km horizontal resolution. In the sensitivity experiments of CPS for DM3 (3-km resolution), the experiment with BMJ scheme shows better heavy rainfall forecast than the other experiments. The experiments with CPS in 3-km horizontal resolution improve rainfall forecasts compared to the experiments without CPS, especially in rainfall distribution. The experiments with CPS show lower LCL(Lifted Condensation Level) than those without CPS at the maximum rainfall point, and weaker vertical velocity is simulated in the experiments with CPS compared to the experiments without CPS. It means that CPS suppresses convective instability and influences mainly convective rainfall. Consequently, heavy rainfall simulation with BMJ CPS is better than the other CPSs, and even in 3-km horizontal resolution, CPS should be applied to control convective instability. This conclusion can be generalized by conducting more experiments for a variety of cases over the Korean Peninsula.

한국의 청천난류 예보 시스템에 대한 연구 Part II: Graphical Turbulence Guidance (GTG) 시스템 (A Study of Forecast System for Clear-Air Turbulence in Korea, Part II: Graphical Turbulence Guidance (GTG) System)

  • 김정훈;전혜영;장욱
    • 대기
    • /
    • 제19권3호
    • /
    • pp.269-287
    • /
    • 2009
  • CAT (clear-air turbulence) forecasting algorithm, the Graphical Turbulence Guidance (GTG) system developed at NCAR (national center for atmospheric research), is evaluated with available observations (e.g., pilot reports; PIREPs) reported in South Korea during the recent 5 years (2003-2008, excluding 2005). The GTG system includes several steps. First, 44 CAT indices are calculated in the domain of the Regional Data Assimilation and Prediction System (RDAPS) analysis data with 30 km horizontal grid spacing provided by KMA (Korean Meteorological Administration). Second, 10 indices that performed ten best forecasting scores are selected. Finally, 10 indices are combined by measuring the score based on the probability of detection, which is calculated using PIREPs exclusively of moderate-or-greater intensity. In order to investigate the best performance of the GTG system in Korea, various statistical examinations and sensitivity tests of the GTG system are performed by yearly and seasonally classified PIREPs. Performances of the GTG system based on yearly distributed PIREPs have annual variations because the compositions of indices are different from each year. Seasonal forecasting is generally better than yearly forecasting, because selected CAT indices in each season represent meteorological condition much more properly than applying the selected CAT indices to all seasons. Wintertime forecasting is the best among the four seasonal forecastings. This is likely due to that the GTG system consists of many CAT indices related to the jet stream, and turbulence associated with the jet stream can be activated mostly in wintertime under strong jet magnitude. On the other hand, summertime forecasting skill is much less than other seasons. Compared with current operational CAT prediction system (KITFA; Korean Integrated Turbulence Forecasting System), overall performance of the GTG system is better when CAT indices are selected seasonally.

Numerical Case Study of Heavy Rainfall Occurred in the Central Korean Peninsula on July 26-28, 1996

  • Kim, Young-Ah;Oh, Jai-Ho
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • 제26권1호
    • /
    • pp.15-29
    • /
    • 1998
  • The numerical simulation of heavy precipitation event occurred in the central Korean Peninsula on July 26-28, 1996 was performed using the fine mesh model. ARPS (Advanced Regional Prediction System) developed by the CAPS (Center for Analysis and Prediction of Storms). Usually, the heavy rainfalls occurred at late July in the Korean Peninsula were difficult to predict, and showed very strong rainfall intensity. As results, they caused a great loss of life and property. As it usual, this case was unsuccessful to predict the location of rain band and the precipitation intensity with the coarse-mesh model. The same case was, however, simulated well with fine-mesh storm-scale model, ARPS. Moisture band at 850 hPa appeared along the Changma Front in the area of China through central Korea passed Yellow Sea. Also the low-level jet at 700 hPa existed in the Yellow Sea through central Korea and they together offered favorable condition to induce heavy rainfall in that area. The convective activities developed to a meso-scale convective system were observed at near the Yangtze River and moved to the central Korean Peninsula. Furthermore, the intrusion of warm and moist air, origninated from typhoon, into the Asia Continent might result in heavy rainfall formation through redistribution of moisture and heat. In the vertical circulation, the heavy rainfall was formed between the upper- and low-level jets, especially, the entrance region of the upper-level jet above the exit the region of the low-level jet. The low level convergence, the upper level divergence and the strong vertical wind were organized to the very north of the low level jet and concentrated on tens to hundreds km horizontal distance. These result represent the upper- and low-level jets are one of the most important reasons on the formation of heavy precipitation.

  • PDF

이젝터를 이용한 순환양식 시스템 폭기공정의 혼합유동 특성 (Mixed Flow Characteristics of Aeration Process for Recirculation Aquaculture System Using Ejector)

  • 박상규;양희천
    • 대한기계학회논문집B
    • /
    • 제37권9호
    • /
    • pp.847-854
    • /
    • 2013
  • 본 연구는 환형 노즐 이젝터를 이용하여 수평방향 폭기공정의 혼합유동 및 산소전달 특성에 대한 실험적 연구를 목표로 한다. 실험변수는 이젝터 피치와 가압수 유량이며, 측정된 유량과 압력을 이용하여 유량비, 수두비 및 효율을 계산하였다. 이적터에서 분출된 혼합유동의 가시화를 통해 정성적 거동을 고찰하였으며, 용존산소량을 측정하여 총괄 산소전달계수를 도출하였다. 이젝터에서 분출된 혼합유동은 가압수의 운동량과 유입된 공기기포의 미립화에 따라 부력분류 또는 수평분류의 거동을 나타내었다. 기포의 크기에 기인하는 부력과 가압수의 운동량에 지배되는 혼합유동의 도달거리는 가압수와 공기기포의 접촉 면적 및 시간에 크게 영향을 미치기 때문에 산소전달률의 중요한 변수임을 유추할 수 있다.

CFD simulation of compressible two-phase sloshing flow in a LNG tank

  • Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.31-57
    • /
    • 2011
  • Impact pressure due to sloshing is of great concern for the ship owners, designers and builders of the LNG carriers regarding the safety of LNG containment system and hull structure. Sloshing of LNG in partially filled tank has been an active area of research with numerous experimental and numerical investigations over the past decade. In order to accurately predict the sloshing impact load, a new numerical method was developed for accurate resolution of violent sloshing flow inside a three-dimensional LNG tank including wave breaking, jet formation, gas entrapping and liquid-gas interaction. The sloshing flow inside a membrane-type LNG tank is simulated numerically using the Finite-Analytic Navier-Stokes (FANS) method. The governing equations for two-phase air and water flows are formulated in curvilinear coordinate system and discretized using the finite-analytic method on a non-staggered grid. Simulations were performed for LNG tank in transverse and longitudinal motions including horizontal, vertical, and rotational motions. The predicted impact pressures were compared with the corresponding experimental data. The validation results clearly illustrate the capability of the present two-phase FANS method for accurate prediction of impact pressure in sloshing LNG tank including violent free surface motion, three-dimensional instability and air trapping effects.

A Case Study of Tsukuba Tornado in Japan on 6 May 2012

  • Choo, Seonhee;Min, Ki-Hong;Kim, Kyung-Eak;Lee, Gyuwon
    • 한국지구과학회지
    • /
    • 제39권5호
    • /
    • pp.403-418
    • /
    • 2018
  • This study conducted synoptic and mesoscale analyses to understand the cause of Japan Tsukuba tornado development, which occurred at 0340 UTC 6 May 2012. Prior to the tornado occurrence, there was a circular jet stream over Japan, and the surface was moist due to overnight precipitation. The circular jet stream brought cold and dry air to the upper-level atmosphere which let strong solar radiation heat the ground with clearing of sky cover. A tornadic supercell developed in the area of potentially unstable atmosphere. Sounding data at Tateno showed a capping inversion at 900 hPa at 0000 UTC 6 May. Strong insolation in early morning hours and removal of the inversion instigated vigorous updraft with rotation due to vertical shear in the upper-level atmosphere. This caused multiple tornadoes to occur from 0220 to 0340 UTC 6 May 2012. When comparing Tateno's climatological temperature and dew-point temperature profile on the day of event, the mid-level atmosphere was moister than typical sounding in the region. This study showed that tornado development in Tsukuba was caused by a combination of (a) topography and potential vorticity anomaly, which increased vorticity over the Kanto Plain; (b) vertical shear, which produced horizontal vortex line; and c) thermal instability, which triggered supercell and tilted the vortex line in the vertical.

콘형 가스버너의 난류유동장에 대한 슬릿과 스월베인의 역할 (The Role of Slits and Swirl Vanes on the Turbulent Flow Fields in Cone Type Gas Burner)

  • 김장권;정규조
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.341-346
    • /
    • 2001
  • The gun-type gas burner adopted in this study is generally composed of some slits and swirl vanes. Therefore, this paper is studied to investigate the effect of slits and swirl vanes on the turbulent flow fields in the horizontal plane of gas swirl burner with a cone type baffle plate measured by using X-probe from hot-wire anemometer system. This experiment is carried out at flow rate $450\;{\ell}/min$, which is equivalent to the combustion air flow rate necessary for heat release 15,000 kcal/hr in gas furnace, in the test section of subsonic wind tunnel. When the burner has only swirl vanes, the axial mean velocity component shows the characteristic that spreads more remarkably toward radial direction than axial one, but when it has only slits, that is developed spreading more toward axial direction than radial one. Therefore, because the biggest speed is spurted in slits and it derive main flow toward axial direction encircling rotational flow that comes out from swirl vane that is situated on the inside of slits, both slits and swirl vanes composing of cone type gas burner act role that decreases the speed near slits and increases the flow speed in the central part of a burner. Moreover, because rotational flow by swirl vanes and fast jet flow by slits increase turbulent intensities effectively coexisting, the turbulent kinetic energy is distributed with a bigger size fairly near slits than burner models which have only slit or swirl vanes within X/R<0.6410.

  • PDF

Eddy-Resolving Simulations for the Asian Marginal Seas and Kuroshio Using Nonlinear Terrain-Following Coordinate Model

  • Song, Y.-Tony;Tang, Tao
    • Journal of the korean society of oceanography
    • /
    • 제37권3호
    • /
    • pp.169-177
    • /
    • 2002
  • An eddy-resolving free-surface primitive-equation model with nonlinear terrain-following coordinates is established to study the exchange of water masses among the Asian marginal seas and their adjacent waters. A curvilinear coordinate system is used to generate the horizontal grid with a variable resolution for the regional oceans from $5^{\circ}$S to $45^{\circ}$N and $100^{\circ}$E to $155^{\circ}$E. The higher resolution region has about a 10 km by 10 km grid covering the complex geometry of the coastal marginal seas, while the lower resolution region has about a 30 km by 30 km grid covering the eastern Pacific. The model is initialized by the Levitus annual climitology and forced by the monthly mean air-sea fluxes of momentum, heat, and freshwater derived from the Comprehensive Ocean-Atmosphere Data Set. High-resolution and low-viscosity are identified as the key factors for a better representation of the exchange of waters through narrow straits and passages between the marginal seas and their adjacent waters. The dynamics of the loop currents and eddies in the South China Sea and Celebes Sea are examined in detail. It has found that the anticyclonic loop and detached eddies from the Kuroshio through the Luzon Strait play an important role in transporting warm and salty water into the South China Sea, while the cyclonic circulation of the Mindanao Current in the Celebes Sea plays a role in contributing cold water to the Indonesian throughflow. The deep undercurrent of the western Pacific is shown to provide fresher water to the South China Sea and Celebes Sea. These modeling results suggest that the exchange processes via the narrow straits and passages are of fundamental importance to the maintenance of water masses for the marginal sea region.

한반도를 돌아 일본에서 관측된 황사의 특징 (2010년 5월 22일-5월 25일) (The Characteristics Asian Dust Observed in Japan Deflecting the Korean Peninsula (2010. 5. 22.-5. 25.))

  • 안보영;전영신
    • 한국지구과학회지
    • /
    • 제32권4호
    • /
    • pp.388-401
    • /
    • 2011
  • 2002년부터 2010년까지 봄에 관측된 황사는 모두 66회였다. 월별로 보면, 3월에 26회, 4월에 23회, 5월에 17회로 5월의 황사는 3, 4월에 비해 드문 현상이다. 2010년 5월 22일부터 25일까지 동아시아에 나타난 황사는 발원하여 이동하면서 한반도를 비껴 일본으로 갔다. 이 황사는 22일 몽골 및 중국 북부지역에서 강한 저기압이 발달하면서 그 후면을 따라 남동진 하였고, 3일 뒤인 25일 일본에서 황사가 관측되었다. 본 연구에서는 사례기간의 종관기상 분석, 기류의 이동 방향, 위성을 이용한 황사의 수평 분포 등을 분석하였다. 그 결과 남중국해에서 발달한 저기압이 북상하면서 그 중심이 한반도 가장자리에 위치하였기 때문에 중국 내륙으로 내려온 황사는 저기압성 기류를 따라 한반도를 돌아 일본으로 이동한 것으로 분석되었다. 이러한 기류의 흐름은 850 hPa면의 바람벡터와 풍속장 분석 및 1000 hPa면의 상대습도 분포에서도 나타났다. 300 hPa 일기도상에서 제트기류는 몽골 서쪽 부근에서 남동진하여 몽골 내륙으로 사행하였다. 이후 이 기류의 영향으로 지상에서 한반도에 저기압이 발달하였는데 이는 황사가 한반도를 돌아 일본으로 이동한 결정적인 흐름이었다. 72시간의 후방공기궤적 분석결과, 일본에서 맨눈으로 관측된 곳의 기류는 모두 중국 산동반도와 동중국해에서 유입된 것으로 나타났다. 황사의 수평분포 결과, MODIS 위성의 RGB 영상에서 5월 24일에는 중국 산둥반도와 동중국해, 일본 규슈지역 남서쪽에서 황사가 탐지되었고, 5월 25일에는 동중국해와 일본 남해지역으로 황사가 이동되는 것을 확인할 수 있었다. 지금까지의 황사 연구는 우리나라에 영향을 미치는 황사의 발원지나 황사의 이동 경로 또는 에어러솔의 특성에 대한 연구가 대부분이지만, 이후 본 연구에서 분석된 사례와 같은 황사가 발생했을 경우 황사예보에 효과적으로 활용될 수 있을 것이다.

Surface Ozone Episode Due to Stratosphere-Troposphere Exchange and Free Troposphere-Boundary Layer Exchange in Busan During Asian Dust Events

  • Moon, Y.S.;Kim, Y.K.;K. Strong;Kim, S.H.;Lim, Y.K.;Oh, I.B.;Song, S.K.
    • 한국환경과학회지
    • /
    • 제11권5호
    • /
    • pp.419-436
    • /
    • 2002
  • The current paper reports on the enhancement of O$_3$, CO, NO$_2$, and aerosols during the Asian dust event that occurred over Korea on 1 May 1999. To confirm the origin and net flux of the O$_3$, CO, NO$_2$, and aerosols, the meteorological parameters of the weather conditions were investigated using Mesoscale Meteorological Model 5(MM5) and the TOMS total ozone and aerosol index, the back trajectory was identified using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model(HYSPLIT), and the ozone and ozone precursor concentrations were determined using the Urban Ashed Model(UAM). In the presence of sufficiently large concentrations of NO$\sub$x/, the oxidation of CO led to O$_3$ formation with OH, HO$_2$, NO, and NO$_2$ acting as catalysts. The sudden enhancement of O$_3$, CO, NO$_2$ and aerosols was also found to be associated with a deepening cut-off low connected with a surface cyclone and surface anticyclone located to the south of Korea during the Asian dust event. The wave pattern of the upper trough/cut-off low and total ozone level remained stationary when they came into contact with a surface cyclone during the Asian dust event. A typical example of a stratosphere-troposphere exchange(STE) of ozone was demonstrated by tropopause folding due to the jet stream. As such, the secondary maxima of ozone above 80 ppbv that occurred at night in Busan, Korea on 1 May 2001 were considered to result from vertical mixing and advection from a free troposphere-boundary layer exchange in connection with an STE in the upper troposphere. Whereas the sudden enhancement of ozone above 100 ppbv during the day was explained by the catalytic reaction of ozone precursors and transport of ozone from a slow-moving anticyclone area that included a high level of ozone and its precursors coming from China to the south of Korea. The aerosols identified in the free troposphere over Busan, Korea on 1 May 1999 originated from the Taklamakan and Gobi deserts across the Yellow River. In particular, the 1000m profile indicated that the source of the air parcels was from an anticyclone located to the south of Korea. The net flux due to the first invasion of ozone between 0000 LST and 0600 LST on 1 May 1999 agreed with the observed ground-based background concentration of ozone. From 0600 LST to 1200 LST, the net flux of the second invasion of ozone was twice as much as the day before. In this case, a change in the horizontal wind direction may have been responsible for the ozone increase.