• Title/Summary/Keyword: Horizontal Vacuum Drain

Search Result 13, Processing Time 0.021 seconds

Numerical Analysis on Effects of Horizontal Drain Arrangement of Vacuum Consolidation (수평배수재 배열의 진공압밀효과에 대한 수치해석)

  • Park, Byung-Soo;Jeong, Gil-Soo;Lee, Jong-Ho;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.109-118
    • /
    • 2003
  • This paper is results of numerical works of investigating effects of horizontal drain arrangements on vacuum consolidation. Extensive numerical analyses were carried out to find the appropriate arrangements of horizontal drain of vacuum consolidation. Commercially available program of CRISP, well known to be good to modelling the behavior of clay material, was used Cam-clay model, based on the Critical State of Soil Mechanics(CSSM), was used to simulate the geotechnical engineering behavior of clay. Model test results carried out previously in the laboratory were compared with numerically estimated results and it was found that results about consolidational settlement with times were in good agreements. Based on this confirmation, parametric numerical study was performed to investigate effects of horizontal drain arrangements on vacuum consolidation with changing the vertical and horizontal spacings between drains for the given soil properties and vacuum. The effect of distance of drain located in top layer from the surface of the ground on the settlement due to vacuum was also investigated. As a results of numerical analyses, appropriate arrangements of horizontal drain to maximize the consolidation settlement due to vacuum were found. The mechanism of vacuum consolidation about the vacuum pressures being transferred to the effective stresses around drains was also evaluated.

  • PDF

Effects of Size and Shape of Drain on Horizontal Vacuum Drain (배수재의 직경과 형상변화가 수평진공배수에 미치는 영향)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Lee, Byung-Kon
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.293-301
    • /
    • 2001
  • This paper is experimental results of investigating the efficiency of horizontal vacuum drainage system. Effects of size and shape of drain on horizontal vacuum drainage were studied. Model tests in the laboratory with soft marine clay were carried out with drain pipe of having three different diameters and PBD (Plastic Board Drain) of strip shape so that consolidation settlement of soft clay due to applied vacuum pressure, amount of discharge, ground settlement and distributions of pore pressure and undrained shear strength were measured during testing. From results of model test, amount of discharge due to vacuum pressure was increased with the diameter of pipe drain whereas the drain efficiency of pipe in per unit area of drain surface was decreased with diameter of pipe. The rate of discharge per unit time was reduced very fast with diameter of pipe. Settlement of ground surface with time was increased with diameter of pipe as a result of increase of discharge to drain pipe.

  • PDF

Effects of Vacuum Pressure in The Laboratory Horizontal Drain Test for Dredged Clay (준설매립토에 대한 실내 수평배수재 실험에서 진공압의 효과)

  • Yang, Won-June;Jang, Yeon-Soo;Park, Jung-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.1
    • /
    • pp.17-25
    • /
    • 2004
  • A horizontal drain method, which applies vacuum pressure at the end of a horizontal drain for discharging pore water, is used often for improving surface reclaimed clay in the field. In this study, to examine the effectiveness of improving consolidation or shear strength depends by varying vacuum pressure, laboratory chamber horizontal drain test using vacuum pressure is performed and the results is compared with that of self-weight consolidation. The results show that water content reduces with the increase of soil depth in case of self-weight consolidation, while it reduces near the horizontal drain and increases with the increase of the distance from the horizontal drain in case of applying vacuum pressure. The shear strength of dredged soil was improved as well, when the vacuum pressure is applied. The optimized consolidation was achieved at the vacuum pressure range of 30 to 50kPa in the laboratory box test of 50cm wide, considering the range of drain interval in the field was between 0.7 and 1.2m.

  • PDF

A Study on the Analysis of Vacuum Consolidation with Horizontal Drains (수평배수재를 이용한 진공압밀공법의 해석에 관한 연구)

  • 김홍택;김석열;윤창진;강인규;김창겸
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.520-527
    • /
    • 2000
  • In the present study, the analytical approaches of vacuum consolidation with horizontal drains were proposed, For dissipating rapidly pore-water in hydraulic fills, vacuum consolidation method applied vacuum pressure in horizontal drains is developed. In the analytical approaches, the governing equation is based on two-dimensional finite strain consolidation theory and the boundary conditions of horizontal drains are considered in applying negative pore-water pressure occurred by vacuum pressure, Also, parametric studies to vacuum pressure and installation pattern of horizontal drains are carried out.

  • PDF

The Effects of Negative Pressure on Horizontal Drain Method (수명배수공법에 있어서 부압의 영향에 관한 실험적 연구)

  • 김정기;김지용;정승용;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.551-558
    • /
    • 2001
  • The horizontal drain method is one of methods improving reclamation ground. This method reduces consolidation time by using drained installed horizontally, and negative pressure is applied on end of these drains by vacuum pump. But, effective negative pressure still wasn't evaluated in applying this method to reclamation ground. To estimate optimum negative pressure, soil box test that make a model the in-situ by installing horizontal drains in the center is performed pressing different vacuum pressure In the laboratory, and the variations in settlement and volume of drained water through the drains during consolidation process were measured. Also, water content with distance from drain and with depth is measured after the test.

  • PDF

Consolidation Behaviour of Dredged Clay Ground Improved by Horizontal Drain Method (수평배수공법에 의해 개량된 준설점토지반의 압밀거동에 관한 연구)

  • 김형주;원명수
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.137-146
    • /
    • 1997
  • In this study, a large consolidation test was carried out to estimate the consolidation behaviour of dredged clay ground improved by horizontal drain using plastic board drain with a vacuum pressure. The test results were analyzed by a numerical simulation using potential consolidation theory applied to a hollow cylinder. The rapid decreases in pore pressure and the drain speed in the plastic board indicate that the consolidation occurred quickly after the vacuum state was applied to the test soil. According to the numerical analysis obtained by applying the linear potential consolidation theory to a clay hollow cylinder with external radial drainage, the pore pressure is affected by the strain and the permeability of the soil rather than by the diffusion types. Therefore, measured surface settlement agreed with the numerical solution at the point where consolidation pressure increasing rate u: -0.5. Also the behaviour of the clay layer settlement in the place where the drain was installed was similar to that shown in Barron's consolidation theory. Finally, the design and construction procedure including the selection of the appropriate arrangement of horizontal drains were discussed based on the results of the laboratory tutsts. It is also shown that the potential consolidation theory make it possible to predict consolidation behaviour in the field using horizontal drains exactly.

  • PDF

Analysis of Consolidation Behavior for Dredged Clay with Horizontal Drains (수평배수재가 설치된 준설매립 점토의 압밀 거동 해석)

  • 김수삼;장연수;박정순;오세웅
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.641-648
    • /
    • 2000
  • The horizontal drain method by installing drains horizontally in the ground is often used to expedite the dispersion of pore water and to increase the strength of dredged soft clay under the action of gravity or vacuum. In this study a numerical analysis method is developed to predict the consolidation process of soft ground with horizontal drains. One-dimensional self-weight consolidation theory is extended tn three-dimensions] theory with appropriate boundary conditions of horizontal drains. In the condition of pore water drainage by gravity, the behavior of the dredged clay with horizontal drains is compared with that of the clay without drains. The influence of design factors of drains on consolidation process is also analyzed.

  • PDF

The Effects of Negative Pressure and Drain Spacing in the Horizontal Method for an Early Settlement of Dredged and Filled Grounds (해안준설매립토의 조기안정을 위한 수평배수공법에서 부압과 배수재 배치간격의 영향)

  • 김수삼;한상재;김병일;김정기
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • In this paper, the laboratory test results with middle-sired ,soil box test in modeling the in-situ installing of horizontal drains are discussed the estimation of the optimum negative pressure. The test was carried out in the different vacuum pressure conditions together with the measurement for the settlement and volume change of drained water by the installed drains during the consolidation process. After the test, the water content was measured to both directions of lateral distance from the drain and depth of the soil, to find out the distribution of ground improvement and strength enhancement. From the analysis on the distribution of water content, the gradual application of vacuum pressure to higher level by pre-determined stages starting from low vacuum pressure is found to be effective and desirable. In the comparison of the degrees of consolidation with elapsed time, the calculated value by the prediction method based on the Barren's conventional theory showed a good agreement with the measured value. With this, It is positively considered that the applicability of the prediction method based on Barren's theory to the practical design of horizontal drains can be justified such as in the calculation of drain spacing and consolidation period.

Field instrumentation and settlement prediction of ground treated with straight-line vacuum preloading

  • Lei, Huayang;Feng, Shuangxi;Wang, Lei;Jin, Yawei
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.447-462
    • /
    • 2019
  • The vacuum preloading method has been used in many countries for ground improvement and land reclamation works. A sand cushion is required as a horizontal drainage channel for conventional vacuum preloading. In terms of the dredged-fill foundation soil, the treatment effect of the conventional vacuum preloading method is poor, particularly in Tianjin, China, where a shortage of sand exists. To solve this problem, straight-line vacuum preloading without sand is widely adopted in engineering practice to improve the foundation soil. Based on the engineering properties of dredged fill in Lingang City, Tianjin, this paper presents field instrumentation in five sections and analyzes the effect of a prefabricated vertical drain (PVD) layout and a vacuum pumping method on the soft soil ground treatment. Through the arrangement of pore water pressure gauges, settlement marks and vane shear tests, the settlement, pore water pressure and subsoil bearing capacity are analyzed to evaluate the effect of the ground treatment. This study demonstrates that straight-line vacuum preloading without sand can be suitable for areas with a high water content. Furthermore, the consolidation settlement and consolidation degree system is developed based on the grey model to predict the consolidation settlement and consolidation degree under vacuum preloading; the validity of the system is also verified.

The Numerical Study on Individual Vacuum Seepage Consolidation Method with Flexible Well Point (연성 Well Point를 적용한 개별진공 침투압밀공법에 관한 해석적 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Young-Seon;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • In this study, the individual vacuum seepage consolidation method, a new soft ground improvement method, was developed to supplement the conventional suction drain method (individual vacuum preloading method) and the geotechnical behavior was predicted through numerical analysis. If the individual vacuum seepage consolidation method applied, the effect of accelerating settlement and increasing the amount of settlement was high when the aquifer was located in the middle or at the bottom of the layer to the target improvement layer. It was found that the pumping amount in the aquifer does not affect the settlement behavior when it exceeds a certain level. Even vacuum pumping wells were installed in various locations, such as inside or outside of the embankment, the difference in settlement and horizontal displacement was insignificant. In addition, it was predicted that the settlement rate was the fastest and the horizontal displacement (inward) was large when both methods were carried out at the same time. Since this method can reach the target settlement amount very quickly, it was confirmed that it is possible to increase the spacing of vertical drain, thereby securing economic feasibility.