• Title/Summary/Keyword: Horizontal Subsidiary

Search Result 10, Processing Time 0.026 seconds

The Effects of Institutions on Foreign Subsidiary's Operational Mode of Korean Firms (진출국 제도가 해외 자회사 운영 방식 선택에 미치는 영향에 관한 연구)

  • Lee, Eung Sok
    • International Area Studies Review
    • /
    • v.22 no.1
    • /
    • pp.61-78
    • /
    • 2018
  • Foreign subsidiary operation modes can be broadly divided into horizontal subsidiaries and vertical subsidiaries. According to institutional theory, foreign subsidiary operation mode differs depending on the host country institution. This study examines the effects of formal and informal institution on the foreign subsidiary operational mode of Korean firms. As a result of the empirical analysis, the higher the cultural distance and the lower political risks, the more favored the vertical foreign operation mode than the horizontal foreign operation mode. On the other hand, the higher the economic freedom and the lower corruption, the more favored the horizontal foreign operation mode than the vertical foreign operation mode.

The Analysis of Structure Grounding Using Reduced Scale Model (축소모델을 이용한 구조체 접지 분석)

  • Gil, Hyoung-Jun;Kim, Hyang-Kon;Han, Woon-Ki;Lee, Ki-Yeon;Choi, Chung-Seog
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2046-2048
    • /
    • 2005
  • This paper deals with ground potential rise of structure grounding electrode when a test current flows through grounding electrode. In order to analyze the potential gradient of ground surface on structure grounding electrode, the reduced scale model has been used. The structures were designed through reducing real buildings and fabricated with four types on a scale of one-one hundred sixty. The supporter was made to put up with weight of structure and could move into vertical, horizontal, rotary direction. When a test current flowed through structure grounding electrodes, ground potential rise was the lowest value at electric cage type(type B). According to resistivity and absorption percentage in concrete attached to structure, the potential distribution of ground surface appeared differently.

  • PDF

Study of seismic performance of cable-stayed-suspension hybrid bridges

  • Zhang, Xin-Jun;Yu, Zhou-Jun
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1203-1221
    • /
    • 2015
  • By taking a cable-stayed-suspension hybrid bridge with main span of 1400 m as example, seismic response of the bridge under the horizontal and vertical seismic excitations is investigated numerically by response spectrum analysis and time history analysis, its seismic performance is discussed and compared to the cable-stayed bridge and suspension bridge with the same main span, and considering the aspect of seismic performance, the feasibility of using cable-stayed-suspension hybrid bridge in super long-span bridges is discussed. Under the horizontal seismic action, the effects of structural design parameters including the cable sag to span ratio, the suspension to span ratio, the side span length, the subsidiary piers in side spans, the girder supporting system and the deck form etc on the seismic performance of the bridge are investigated by response spectrum analysis, and the favorable values of these design parameters are proposed.

Distribution of Potential Rise as a Function of Shape of Grounding Electrodes

  • Gil, Hyoung-Jun;Choi, Chung-Seog;Kim, Hyang-Kon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.73-79
    • /
    • 2007
  • In order to analyze the potential rise of grounding systems installed in buildings, a hemispherical grounding simulation system was studied. Potential rise was measured and analyzed regarding the shape and distance of the grounding electrodes by using this system. The system was composed of a hemispherical water tank, AC power supply, a movable potentiometer, and test grounding electrodes. The potential rise was measured in real time by the horizontal moving probe of be potentiometer. The test grounding electrodes were fabricated through reducing the grounding electrode installed in real buildings such as the ground rod, grounding grid and so on. The potential rise was displayed in a two-dimensional profile and was analyzed regarding the shapes of the ground electrodes. The potential rise of the grounding grid combined with a ground rod was the lowest of every grounding electrode tested. The proposed results can be applicable to evaluating ground potential rise in grounding systems, and the analytical data can be used to stabilize the electrical installations and prevent electrical disasters.

Hydraulic Experiments on the Measuring Equipments of Ronoff and Soil Loss (유출수 및 유실토량 측정장치에 관한 수리시험)

  • 유한열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.10 no.1
    • /
    • pp.1377-1387
    • /
    • 1968
  • In order to measure runoff and soil losses produced in a small test plot during rainfall, it is usually insufficient to use a tank only, necessitating the combined use of a main tank and a subsidiary tank. Accordingly. exact measurement largely depends on how to connect those two measuring tanks. The main purpose of this thesis is to improve the connecting parts of two measuring tanks so as to assure exact measurement of runoff and soil losses. In this experiment, two types of main tank, i. e. A-type and B-type, were used. A-type is a square tank having a flume at its end. At the flume, ten apertures are provided by using metal columns so as to be able to catch one tenth of total muddy flow discharging at the end of the flume, One tenth of total flow is led to the subsidiary tank through a slot sampler fixed to an aperture. B-type differes in that its flume does not have apertures and slot sampler is fixed directly to the end of the flume, other features being the same as those of A-type. Discharge volumes were measured by using weighing tanks and compared. The effect of baffle screen provided in the flume was also observed in connection with exact measurements. In order to keep main tank and its flume in a horizontal position, bolts and nuts mechanism was used. Vertical and horizontal screens were provided in the main to prevent coarse sands coming into the flume. The conclusion derived through this experiment is as follows: (1) The discharge through slot sampler at each aperture is almost the same for A-type. However, it is slightly more than one tenth of total discharge volume. (2) In case that baffle screen is provided in the flume of A-type tank, the discharge volume of slot sampler is less than that of the same type without screen. (3) For B-type tank, slot sampler discharge increases as slot sampler nears toward the center of flume. (4) When baffle screen is provided in the flume of B-type, slot sampler discharge is less than that of the same type without screen, and this phenomenon is more apparent as compared with A-type. (5) In case that the slot width of slot sampler for B-type is one inch, slot sampler discharge exceeds one tenth of total discharge volume. (6) When the slot width for B-type is 15/16 inch and slot sampler is fixed 3/8 inch apart from either flume wall, slot sampler discharge is approximately equal to one tenth of total discharge volume.

  • PDF

Implementation of an Agent-centric Planning of Complex Events as Objects of Pedagogical Experiences in Virtual World

  • Park, Jong Hee
    • International Journal of Contents
    • /
    • v.12 no.1
    • /
    • pp.25-43
    • /
    • 2016
  • An agent-centric event planning method is proposed for providing pedagogical experiences in an immersed environment. Two-level planning is required at in a macro-level (i.e., inter-event level) and an intra-event level to provide realistic experiences with the objective of learning declarative knowledge. The inter-event (horizontal) planning is based on search, while intra-event (vertical) planning is based on hierarchical decomposition. The horizontal search is dictated by several realistic types of association between events besides the conventional causality. The resulting schematic plan is further augmented by conditions associated with those agents cast into the roles of the events identified in the plan. Rather than following a main story plot, all the events potentially relevant to accomplishing an initial goal are derived in the final result of our planning. These derived events may progress concurrently or digress toward a new main goal replacing the current goal or event, and the plan could be merged or fragmented according to their respective lead agents' intentions and other conditions. The macro-level coherence across interconnected events is established via their common background world existing a priori. As the pivotal source of event concurrency and intricacy, agents are modeled to not only be autonomous but also independent, i.e., entities with their own beliefs and goals (and subsequent plans) in their respective parts of the world. Additional problems our method addresses for augmenting pedagogical experiences include casting of agents into roles based on their availability, subcontracting of subsidiary events, and failure of multi-agent event entailing fragmentation of a plan. The described planning method was demonstrated by monitoring implementation.

Distribution Pattern of Principal Species in the Mantle Community (임연군락의 주요종 분포양식)

  • Jung, Yong-Kyoo;Jong-Won Kim
    • The Korean Journal of Ecology
    • /
    • v.17 no.4
    • /
    • pp.513-521
    • /
    • 1994
  • Distribution patern of 30 species that are occurring predominantly in the mantle communities (Mantelgesellschaften) in South Korea was studied. The study was arried out by geographic and bioclimatic analysis on 368 releves obtained from the Zurich-Montpellier School's method, which involves direct analysis on the latitude, altitude, annual mean temperature and the lowest temperature of the site. Rosa multiflora and Pueraria thunbergiana which are regarded as repersentative pioneer species to the mantle community has the highest frequency, 70.1% and 60.3%, respectively. Three distribution patterns were recognized, i.e. northern type, central type and southern type, and each type was characterized by horizontal and altitudinal amplitude. Their concetrate distribution ranges on the annual mean temperature were 8~11℃, 9~12℃ and 10~13℃, respectively. It was recognized that tendencies of overlapping and continuous distribution pattern of the types and species exist. Geographically, the souther limit f the northern type is 35.5。N and the northern limit of the southern type 37.0。N. The central type is located at an coincided with the previous study in which cool-temperate forests were synchorologically indentified into northern/altimontane, certral/montane and southern/submontane type. The subsidiary knowledges from this study will provide practical information on the constructuin of the fence plant community for environmental conservation.

  • PDF

A Study on the Spatial types and characteristics of Ramp (램프(Ramp)의 공간적 유형과 특성에 관한 연구)

  • Lee, Sun-Young;Lee, Hyoung-Geun
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.3 s.62
    • /
    • pp.38-45
    • /
    • 2007
  • In the architectural space of modem age, expanding to the vertical and horizontal direction for the interaction between space and space is becoming an indispensable factor, and in this expansion, ramps are being positioned as one of the important factors. With an increased use of ramps, they show a variety of changes in types, functions and even concepts. The space where modem ramps are used exhibits a phenomenon that accommodates and expands many functions as well as the confined function of moving people, and is widening the scope of recognition on the functions of ramp. In addition, this phenomenon can be seen as an architectural reflection on the complexation trend of the modem society, the components comprising a ramp contact the body of experiencers closely and thus have a direct effect on their behavior or feeling, and owing to this, it is a space where new functions and meaning are highly likely to be derived. In this study, spaces where ramps are used stay away from an element of uniform vertical movement but have an independent environment within the entire space, thereby being used as a space dominating the nature of the building, not a subsidiary element of it. In this study, therefore, it could be known that spaces in which ramps are used are different in their meaning according to the patterns, not as an element of uniform vertical movement. In addition, these conclusions are the results by analyzing the patterns of ramps taking place in modem spaces and are thought to be helpful in understanding spaces where ramps are used.

Parameters of the Electric and Magnetic Fields Due to Cloud-to-Ground Lightnings (낙뢰에 의한 전계와 자계 파형의 파라미터)

  • 이복희;안창환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.3
    • /
    • pp.359-368
    • /
    • 1998
  • One of the topics concerning the electromagnetic compatibility of modern electronic circuits is to take protection from transient overvoltages caused by not only cloud-to-ground lightnings but also induced lightning discharges. In this paper, the vertical electric and horizontal magnetic fields from cloud-to-ground lightnings were measured and analyzed. The electric and magnetic fields waveforms associated with cloud-to-ground lightnings have several subsidiary peaks which decrease with time. There were not much differences between the electric and magnetic field due to long distance cloud-to-ground discharges. Average values of 10~90% rise times of electric fields are $4.65mutextrm{s}$ for the positive cloud-to-ground lightning and $3.29mutextrm{s}$ for the negative cloud-to-ground lightning, respectively. Also, in the positive and negative cloud-to-ground lightning discharges, the zero-to-zero crossing times in the wave tail of magnetic fields are significantly longer than those of the electric fields.

  • PDF

Geotechnical Engineering Progress with the Incheon Bridge Project

  • Cho, Sung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.133-144
    • /
    • 2009
  • Incheon Bridge, 18.4 km long sea-crossing bridge, will be opened to the traffic in October 2009 and this will be the new landmark of the gearing up north-east Asia as well as the largest & longest bridge of Korea. Incheon Bridge is the integrated set of several special featured bridges including a magnificent cable-stayed girder bridge which has a main span of 800 m width to cross the navigation channel in and out of the Port of Incheon. Incheon Bridge is making an epoch of long-span bridge designs thanks to the fully application of the AASHTO LRFD (load & resistance factor design) to both the superstructures and the substructures. A state-of-the-art of the geotechnologies which were applied to the Incheon Bridge construction project is introduced. The most Large-diameter drilled shafts were penetrated into the bedrock to support the colossal superstructures. The bearing capacity and deformational characteristics of the foundations were verified through the world's largest static pile load test. 8 full-scale pilot piles were tested in both offshore site and onshore area prior to the commencement of constructions. Compressible load beyond 30,000 tonf pressed a single 3 m diameter foundation pile by means of bi-directional loading method including the Osterberg cell techniques. Detailed site investigation to characterize the subsurface properties had been carried out. Geotextile tubes, tied sheet pile walls, and trestles were utilized to overcome the very large tidal difference between ebb and flow at the foreshore site. 44 circular-cell type dolphins surround the piers near the navigation channel to protect the bridge against the collision with aberrant vessels. Each dolphin structure consists of the flat sheet piled wall and infilled aggregates to absorb the collision impact. Geo-centrifugal tests were performed to evaluate the behavior of the dolphin in the seabed and to verify the numerical model for the design. Rip-rap embankments on the seabed are expected to prevent the scouring of the foundation. Prefabricated vertical drains, sand compaction piles, deep cement mixings, horizontal natural-fiber drains, and other subsidiary methods were used to improve the soft ground for the site of abutments, toll plazas, and access roads. Light-weight backfill using EPS blocks helps to reduce the earth pressure behind the abutment on the soft ground. Some kinds of reinforced earth like as MSE using geosynthetics were utilized for the ring wall of the abutment. Soil steel bridges made of corrugated steel plates and engineered backfills were constructed for the open-cut tunnel and the culvert. Diverse experiences of advanced designs and constructions from the Incheon Bridge project have been propagated by relevant engineers and it is strongly expected that significant achievements in geotechnical engineering through this project will contribute to the national development of the longspan bridge technologies remarkably.

  • PDF