• Title/Summary/Keyword: Horizontal Stress

Search Result 760, Processing Time 0.03 seconds

Characteristics of Excessive Horizontal Stress in Korea by Hydraulic Fracturing Stress Measurement (수압파쇄법에 의한 국내 과잉 수평응력 분포 특성에 관한 연구)

  • Bae, Seong-Ho;Jeon, Seok-Won;Kim, Hak-Soo;Kim, Jae-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.431-438
    • /
    • 2005
  • In this paper, the characteristics of excessive horizontal stress components in Korea were studied using the in-situ hydraulic fracturing stress measurement data over five hundred in 110 individual test boreholes. Based on the in-situ testing data, the magnitude and orientation of the horizontal stress component and variation of stress ratio (K) with depth were investigated. And also horizontal stress magnitude versus depth relationships and distribution limits of stress ratio components were suggested. For the subsurface space above 310 m depth in the entire territory, the stress ratio has a tendency to diminish and be stabilized with depth, but for some areas, it was revealed that the excessive horizontal stress fields with stress ratio close to 3.0 below 200 m in depth have formed. The result of investigation for excessive horizontal stress regions indicates that there exist several regions above 300 m in depth where localized excessive horizontal stresses enough to induce potentially brittle failure around future openings have formed.

  • PDF

Characteristics of Excessive Horizontal Stress in ]Korea by Hydraulic Fracturing Stress Measurement (수압파쇄법에 의한 국내 과잉 수평응력 분포 특성에 관한 연구)

  • Bae Seong-Ho;Jeon Seok-Won;Kim Hag-Soo;Kim Jae-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.103-110
    • /
    • 2005
  • In this paper, the characteristics of excessive horizontal stress components in Korea were studied using more than five hundred measured data set of in-situ hydraulic fracturing test. Based on the in-situ testing data, the magnitude and orientation of the horizontal stress component and variation of stress ratio (K) with depth were investigated. And also horizontal stress magnitude versus depth relationships and distribution limits of stress ratio components were suggested. For the depth less than 310 m in the entire territory, the stress ratio has a tendency to diminish and stabilize with depth, but fur some areas, it was revealed that the excessive horizontal stress fields with stress ratio close to 3.0 below 200 m in depth have formed. The results from the investigation of excessive horizontal stress regions showed that there existed several regions where the localized excessive horizontal stress was big enough to potentially induce brittle failure around the openings at less than 300 m in depth.

Creep characteristics and instability analysis of concrete specimens with horizontal holes

  • Xin, Yajun;Hao, Haichun;Lv, Xin;Ji, Hongying
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.563-572
    • /
    • 2018
  • Uniaxial compressive strength test and uniaxial compression creep one were produced on four groups of twelve concrete specimens with different hole number by RLW-2000 rock triaxial rheology test system. The relationships between horizontal holes and instantaneous failure stress, the strain, and creep failure stress, the strain, and the relationships between stress level and instantaneous strain, creep strain were studied, and the relationship between horizontal holes and failure mode was determined. The results showed that: with horizontal hole number increasing, compressive strength of the specimens decreased whereas its peak strain increased, while both creep failure strength and its peak strain decreased. The relationships between horizontal holes and compressive strength of the specimens, the peak strain, were represented in quadratic polynomial, the relationships between horizontal holes and creep failure strength, the peak strain were represented in both linear and quadratic polynomial, respectively. Instantaneous strain decreased with stress level increasing, and the more holes in the blocks the less the damping of instantaneous strain were recorded. In the failure stress level, instantaneous strain reversally increased, creep strain showed three stages: decreasing, increasing, and sharp increasing; in same stress level, the less holes the less creep strain rate was recorded. The compressive-shear failure was produced along specimen diagonal line where the master surface of creep failure occurred, the more holes in a block, the higher chances of specimen failure and the more obvious master surface were.

In situ horizontal stress effect on plastic zone around circular underground openings excavated in elastic zones

  • Komurlu, Eren;Kesimal, Ayhan;Hasanpour, Rohala
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.783-799
    • /
    • 2015
  • In this study, effect of horizontal in situ stress on failure mechanism around underground openings excavated in isotropic, elastic rock zones is investigated. For estimating the plastic zone occurrence, an induced stress influence area approach (Bray Equations) was modified to define critical stress ratio according to the Mohr-Coulomb failure criterion. Results obtained from modified calculations were compared with results of some other analytical solutions for plastic zone thickness estimation and the numerical modelling (finite difference method software, FLAC2D) study. Plastic zone and its geometry around tunnels were analyzed for different in situ stress conditions. The modified equations gave similar results with those obtained from the other approaches. However, safer results were calculated using the modified equations for high in situ stress conditions and excessive ratio of horizontal to vertical in situ stresses. As the outcome of this study, the modified equations are suggested to use for estimating the plastic zone occurrence and its thickness around the tunnels with circular cross-section.

A Study on the Bond-Behavior of Bonded Concrete Overlays (접착식 콘크리트 덧씌우기 포장의 부착거동 연구)

  • Kim, Young-Kyu;Lee, Seung-Woo;Han, Seung-Hwan
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.31-45
    • /
    • 2012
  • PURPOSES: In Korea, rapid maintenance of distressed concrete pavement is required to prevent traffic jam of the highway. Asphalt concrete overlay has been used as a general maintenance method of construction for aged concrete pavement. AC overlay on existing concrete pavements experience various early distresses such as reflection crack, pothole and rutting, due to different physical characteristics between asphalt overlay and existing concrete pavement. Bonded concrete overlay(BCO) is a good alternative since it has advantages that can reduce various distresses during the service life since overlay material has similar properties with existing concrete pavements. Recently, BCO which uses the ultra rapid harding cement has been applied for maintenance of highway. BCO has advantage of structural performance since it does monolithic behave with existing pavement. Therefore, it is important to have a suitable bond strength criteria for securing performance of BCO. Bond strength criteria should be larger than normal tensile stress and horizontal shear stress occurred by traffic and environmental loading at bond interface. Normal tensile stress and horizontal shear stress need to estimated for the establishment of practical bond strength criteria. METHODS: This study aimed to estimate the bond stresses at the interface of BCO using the three dimensional finite element analysis. RESULTS: As a result of this study, major failure mode and maximum bond stress are evaluated through the analysis of normal tensile stress and horizontal shear stress for various traffic and environmental load conditions. CONCLUSIONS: It was known that normal tensile stresses are dominated by environmental loading, and, horizontal shear stresses are dominated by traffic loading. In addition, bond failure occurred by both of normal tensile stresses and horizontal shear stresses; however, normal tensile stresses are predominated over horizontal shear stresses.

A new geomechanical approach to investigate the role of in-situ stresses and pore pressure on hydraulic fracture pressure profile in vertical and horizontal oil wells

  • Saberhosseini, Seyed Erfan;Keshavarzi, Reza;Ahangari, Kaveh
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.233-246
    • /
    • 2014
  • Estimation of fracture initiation pressure is one of the most difficult technical challenges in hydraulic fracturing treatment of vertical or horizontal oil wells. In this study, the influence of in-situ stresses and pore pressure values on fracture initiation pressure and its profile in vertical and horizontal oil wells in a normal stress regime have been investigated. Cohesive elements with traction-separation law (XFEM-based cohesive law) are used for simulating the fracturing process in a fluid-solid coupling finite element model. The maximum nominal stress criterion is selected for initiation of damage in the cohesive elements. The stress intensity factors are verified for both XFEM-based cohesive law and analytical solution to show the validation of the cohesive law in fracture modeling where the compared results are in a very good agreement with less than 1% error. The results showed that, generally by increasing the difference between the maximum and minimum horizontal stress, the fracture pressure and its profile has been strongly changed in the vertical wells. Also, it's been clearly observed that in a horizontal well drilled in the direction of minimum horizontal stress, the values of fracture pressure have been significantly affected by the difference between overburden pressure and maximum horizontal stress. Additionally, increasing pore pressure from under-pressure regime to over-pressure state has made a considerable fall on fracture pressure in both vertical and horizontal oil wells.

Study on the distribution law of stress deviator below the floor of a goaf

  • Li, Zhaolong;Shan, Renliang;Wang, Chunhe;Yuan, Honghu;Wei, Yonghui
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.301-313
    • /
    • 2020
  • In the process of mining closely spaced coal seams, the problem of roadway arrangement in lower coal seams has long been a concern. By means of mechanical model calculation and numerical simulation postprocessing, the distribution of the stress deviator below the floor of a goaf and the evolution of the stress deviator in the vertical and horizontal directions are studied under the influence of horizontal stress. The results of this theoretical study and numerical simulation show that the stress deviator decreases exponentially with increasing depth from the floor below the coal side. With the increase in the horizontal stress coefficient λ, the stress deviator concentration area shifts. The stress deviator is concentrated within 10 m below the goaf and 15 m laterally from the coal side; thus, the magnitude of the surrounding rock stress deviator should be considered when planning the construction of a roadway in this area.

Effects of Minimum Horizontal Load on Structural Safety of System Supports (시스템 동바리 구조 안전성에 대한 최소 수평하중의 영향)

  • Chung, Dae Hyun;Kim, Gyeoung Yun;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.37-43
    • /
    • 2015
  • This study examined the effects of the minimum horizontal load on the structural behaviors and safety of system supports. The minimum horizontal load was frequently ignored in the design of system supports even though the level of that load was specified in the code and guide in Korea such as 'Standard Specification in Temporary Construction' and 'Guide to Installation of Shores for a Concrete Bridge'. To examine the effects of considering the minimum horizontal load, the finite element analysis were performed for various system supports. By varying installing parameters of system supports such as the vertical member spacing, the installation height, and the thickness of slab, the maximum combined stress ratios were estimated to investigate the structural safety of system supports. The results showed similar axial stress in vertical members but an increase in bending stress with a consideration of the horizontal load. The combines stress ratios are remarkably increased due to the consideration of the horizontal load. Consequently, the system supports, which were initially estimated to be safe when only the vertical loads were considered, were changed to be unsafe in most cases by the effects of the both the vertical and horizontal stresses. Therefore, the minimum horizontal load following the code and the guide is an essential load that could control the structural safety of system supports.

An experimental study on the hydraulic fracturing of radial horizontal wells

  • Yan, Chuanliang;Ren, Xu;Cheng, Yuanfang;Zhao, Kai;Deng, Fucheng;Liang, Qimin;Zhang, Jincheng;Li, Yang;Li, Qingchao
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.535-541
    • /
    • 2019
  • Combining the radial well drilling and hydraulic fracturing technique, the production capacity of the reservoirs with low-permeability can be improved effectively. Due to the existence of radial holes, the stress around the well is redistributed, and the initiation and propagation of hydraulic fractures are different with those in traditional hydraulic fracturing. Therefore, it is necessary to study the influences of radial horizontal wells on hydraulic fracturing. The laboratory experiment was conducted to simulate the hydraulic fracturing on the physical model with radial holes. The experimental results showed that, compared with the borehole without radial holes, the sample with radial hole in the direction of maximum horizontal stress was fractured with significantly lower pressure. As the angle between direction of the horizontal hole and the maximum horizontal stress increased, the breakdown pressure grew. While when the radial hole was drilled towards the direction of the minimum horizontal stress, the breakdown pressure increased to that needed in the borehole without radial holes. When the angle between the radial hole and the maximum horizontal stress increase, the pressure required to propagate the fractures grew apparently, and the fracture become complex. Meanwhile, the deeper the radial hole drilled, the less the pressure was needed for fracturing.

Elastic solutions for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface

  • Wang, Ling;Zou, Jin-Feng;Yang, Tao;Wang, Feng
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.201-215
    • /
    • 2019
  • A new approach of analyzing the displacements and stress of the surrounding rock for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface is investigated in this study. In the proposed approach, by using a virtual image technique, the shear stress of the vertical ground surface is revised to be zero, and elastic solutions of the surrounding rock are obtained before stress revision. To revise the vertical normal stress and shear stress of horizontal ground surface generated by the combined action of the actual and image sinks, the harmonic functions and corresponding stress function solutions were adopted. Based on the Boussinesq's solutions and integral method, the horizontal normal stress of the vertical ground surface is revised to be zero. Based on the linear superposition principle, the final solution of the displacements and stress were proposed by superimposing the solutions obtained by the virtual image technique and the stress revision on the horizontal and vertical ground surfaces. Furthermore, the ground settlements and lateral displacements of the horizontal and vertical ground surfaces are derived by the proposed approach. The proposed approach was well verified by comparing with the numerical method. The discussion based on the proposed approach in the manuscript shows that smaller horizontal ground settlements will be induced by lower tunnel buried depths and smaller limb distances. The proposed approach for the displacement and stress of the surrounding rocks can provide some practical information about the surrounding rock stability analysis of shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface.