• 제목/요약/키워드: Horizontal Passive Loop

검색결과 5건 처리시간 0.017초

축소 모델을 이용한 수동 루프 송전선 자기장 저감율 분석 (Analysis of ELF Magnetic Field Reduction Ratio on Passive Loop Using Scale Down Model of Transmission Line)

  • 조연규;명성호;이재복;장석훈
    • 한국전자파학회논문지
    • /
    • 제17권12호
    • /
    • pp.1231-1239
    • /
    • 2006
  • 본 연구는 수동 루프 축소 시험 장치를 이용하여 수동 루프 유형별 자기장 저감 효과를 분석하였다. 본 연구에서는 수직 2회선 선로 및 수평 선로를 대상으로 실험을 통하여 향후 실증 시험 선로에 적용할 수동 루프의 자기장 저감 효과를 검토하였다. 그 결과 수동 루프 채용으로 선로 리액턴스 보상이 없어도 50 % 이상의 송전 선로의 자기장 저감 효과를 얻을 수 있음을 확인함으로써 실증 선로 수동 루프 적용 방안을 확보하였다. 대부분 우리나라 송전 선로에 채용되는 수직 2회선 선로에서는 수평 루프보다는 수직 루프가 자기장 저감율에 보다 효과적이었으며 차폐 영역에서도 근거리뿐만 아니라 원거리까지도 효과가 좋음을 알 수 있었다. 또한, 수동 루프를 3 턴으로 설치하는 경우가 1 턴에 비해 2배정도 자기장 저감 효과가 있음을 확인하였다.

Assessment of Magnetic Field Mitigation and Electrical Environmental Effects for Commercially Operating 154kV Transmission Lines with Passive Loop

  • Lee, Byeong-Yoon;Myung, Sung-Ho;Ju, Mun-No;Cho, Yeun-Gyu;Lee, Dong-Il;Lim, Yun-Seog;Kim, Sang-Beom
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.991-996
    • /
    • 2014
  • Power frequency magnetic field is still a critical problem for new construction of overhead power transmission lines in Korea because most people have been concerned about possibly carcinogenic effects of it. Although reference level of power frequency(60Hz) magnetic field has been set to 200uT in ICNIRP guidelines published in 2010, Korean government has no intention of adjusting 83.3uT specified by law in 2006 to this new reference level in consideration of people's concerns for the time being. Regardless of the current regulated magnetic field value, electric utility company has been trying to reduce magnetic field in the residential area in the vicinity of overhead power transmission lines to take into account of public concerns on the long-term effect of magnetic fields. In an effort to reduce magnetic field, engineering side has made considerable efforts to develop passive loop based, cost-effective mitigation technique of power frequency magnetic field more than ten years. In order to verify developed power frequency magnetic field mitigation technique based on passive loop, a horizontal type of passive loop was designed and installed for commercially operating 154kV overhead power transmission line for the first time in Korea. The measurement results before and after the installation of passive loop showed that magnetic field could be reduced to about 20%. The electrical environmental effects such as AN, RI and TVI were assessed before and after the installation of passive loop and these values were complied with the requirements specified by electric utility. It has been confirmed from the field test results that passive loop could be commercially and cost-effectively utilized to mitigate power frequency magnetic field.

Stability Analysis of Decentralized PVFC Algorithm for Cooperative Mobile Robotic Systems

  • Suh, Jin-Ho;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1909-1914
    • /
    • 2004
  • Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion task was specified behaviorally in terms of a velocity field, and the closed-loop was passive with respect to a supply rate given by the environment input. However the PVFC was only applied to a single manipulator, the proposed control law was derived geometrically, and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose a method to apply a decentralized control algorithm to cooperative 3-wheeled mobile robots whose subsystem is under nonholonomic constraints and which convey a common rigid object in a horizontal plain. Moreover it is shown that multiple robot systems ensure stability and the velocities of augmented systems convergence to a scaled multiple of each desired velocity field for cooperative mobile robot systems.

  • PDF

VIRTUAL PASSIVITY-BASED DECENTRALIZED CONTROL OF MULTIPLE 3-WHEELED MOBILE ROBOTIC SYSTEMS VIA SYSTEM AUGMENTATION

  • SUH J. H.;LEE K. S.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.545-554
    • /
    • 2005
  • Passive velocity field control (PVFC) was previously developed for fully mechanical systems, in which the motion task was specified by behaviors in terms of a velocity field and the closed-loop was passive with respect to the supply rate given by the environment input. However, the PVFC was only applied to a single manipulator. The proposed control law was derived geometrically and the geometric and robustness properties of the closed-loop system were also analyzed. In this paper, we propose a virtual passivity-based algorithm to apply decentralized control to multiple 3­wheeled mobile robotic systems whose subsystems are under nonholonomic constraints and convey a common rigid object in a horizontal plain. Moreover, it is shown that multiple robot systems ensure stability and the velocities of augmented systems converge to a scaled multiple of each desired velocity field for cooperative mobile robot systems. Finally, the application of proposed virtual passivity-based decentralized algorithm via system augmentation is applied to trace a circle and the simulation results is presented in order to show effectiveness for the decentralized control algorithm proposed in this research.

Numerical verification of a dual system's seismic response

  • Phocas, Marios C.;Sophocleous, Tonia
    • Earthquakes and Structures
    • /
    • 제3권5호
    • /
    • pp.749-766
    • /
    • 2012
  • Structural control through integration of passive damping devices within the building structure has been increasingly implemented internationally in the last years and has proven to be a most promising strategy for earthquake safety. In the present paper an alternative configuration of an innovative energy dissipation mechanism that consists of slender tension only bracing members with closed loop and a hysteretic damper is investigated in its dynamic behavior. The implementation of the adaptable dual control system, ADCS, in frame structures enables a dual function of the component members, leading to two practically uncoupled systems, i.e., the primary frame, responsible for the normal vertical and horizontal forces and the closed bracing-damper mechanism, for the earthquake forces and the necessary energy dissipation. Three representative international earthquake motions of differing frequency contents, duration and peak ground acceleration have been considered for the numerical verification of the effectiveness and properties of the SDOF systems with the proposed ADCS-configuration. The control mechanism may result in significant energy dissipation, when the geometrical and mechanical properties, i.e., stiffness and yield force of the integrated damper, are predefined. An optimum damper ratio, DR, defined as the ratio of the stiffness to the yield force of the hysteretic damper, is proposed to be used along with the stiffness factor of the damper's- to the primary frame's stiffness, in order for the control mechanism to achieve high energy dissipation and at the same time to prevent any increase of the system's maximum base shear and relative displacements. The results are summarized in a preliminary design methodology for ADCS.