• Title/Summary/Keyword: Hopping mechanism

Search Result 82, Processing Time 0.035 seconds

Study of Nonstoichiometry and Physical Properties of the $Nd_{1-x}(Ba_{0.40}Mg_{0.60})_{1+x}FeO_{4-y}$ System

  • 요철현;노권순;장순호
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.261-264
    • /
    • 1995
  • A series of samples of the Nd1-x(Ba0.40Mg0.60)1+xFeO4-y (x=0.00, 0.10, 0.20, and 0.30) system has been synthesized at 1450 ℃ under an atmospheric air pressure. The x-ray powder diffraction analysis of the solid solutions assigns the structure of all the compositions to orthorhombic system. Mohr salt analysis shows that τ and y values increase with x value and nonstoichiometric chemical formulas of the system can be formulated from the x, τ, and y values. Oxygen vacancies are distributed along c-axis in the perovskite layer. The magnetic ordering temperature remains unchanged with x value. Electrical conductivity and activation energy depend only on the mixed valence state of Fe ion. Conduction mechanism can be suggested as the hopping of electron between eg orbitals of Fe3+ and Fe4+ ions through Fe3+-O-Fe4+ bonds. Magnetic susceptibility and electrical conductivity are discussed with the nonstoichiometric chemical formulas.

Electrical Conduction Mechanism of (Ba, Sr) $TiO_3$ Thin Film Capacitor in Low Electric Field Region (고유전 (Ba, Sr) $TiO_3$ 박막 커패시터의 저전계 영역에서의 전기전도기구)

  • Jang, Hoon;Jang, Byung-Tak;Cha, Seon-Yong;Lee, Hee-Chul
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.6
    • /
    • pp.44-51
    • /
    • 1999
  • The electrical conduction mechanism of high dielectric $(Ba,Sr)TiO_3$ (BST) thin film capacitor, which is the promising cell capacitor for high density DRAM, was investigated in low field region (<0.2MV/cm). It is known that the current in the low field region consists of dielectric relaxation current and leakage current. The current-time (I-t) measurement technique under the constant voltage was used for extracting successfully each current component. The conduction mechanism of the BST capacitor was deduced from the dependency of the current on the measurement temperature, strength of electric field, the polarity of applied electric field and post annealing process. From these results, it was suggested that the dielectric relaxation current and the leakage current are originated from the redistribution of internally trapped electron by hopping process and Pool-Frenkel conduction mechanism, respectively. It was also concluded that traps causing these two current components are due to oxygen vacancies within the BST film.

  • PDF

A Multi-Service MAC Protocol in a Multi-Channel CSMA/CA for IEEE 802.11 Networks

  • Ben-Othman, Jalel;Castel, Hind;Mokdad, Lynda
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.287-296
    • /
    • 2008
  • The IEEE 802.11 wireless standard uses the carrier sense multiple access with collision avoidance (CSMA/CA) as its MAC protocol (during the distributed coordination function period). This protocol is an adaptation of the CSMA/CD of the wired networks. CSMA/CA mechanism cannot guarantee quality of service (QoS) required by the application because orits random access method. In this study, we propose a new MAC protocol that considers different types of traffic (e.g., voice and data) and for each traffic type different priority levels are assigned. To improve the QoS of IEEE 802.11 MAC protocols over a multi-channel CSMA/CA, we have developed a new admission policy for both voice and data traffics. This protocol can be performed in direct sequence spread spectrum (DSSS) or frequency hopping spread spectrum (FHSS). For voice traffic we reserve a channel, while for data traffic the access is random using a CSMA/CA mechanism, and in this case a selective reject and push-out mechanism is added to meet the quality of service required by data traffic. To study the performance of the proposed protocol and to show the benefits of our design, a mathematical model is built based on Markov chains. The system could be represented by a Markov chain which is difficult to solve as the state-space is too large. This is due to the resource management and user mobility. Thus, we propose to build an aggregated Markov chain with a smaller state-space that allows performance measures to be computed easily. We have used stochastic comparisons of Markov chains to prove that the proposed access protocol (with selective reject and push-out mechanisms) gives less loss rates of high priority connections (data and voices) than the traditional one (without admission policy and selective reject and push-out mechanisms). We give numerical results to confirm mathematical proofs.

Structural, Electrical and Magnetic Properties of Wide Bandgap Diluted Magnetic Semiconductor CuAl1-xMnxO2 Ceramics (널은 띠간격 묽은 자성반도체 CuAl1-xMnxO2 세라믹스의 구조 및 전자기 특성)

  • Ji Sung Hwa;Kim Hyojin
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.595-599
    • /
    • 2004
  • We investigated the structural, electrical and magnetic properties of Mn-doped $CuAlO_2$ delafossite ceramics ($CuAl_{1-x}Mn_{x}O_2,\;0\le\;x\;\le0.05$), synthesized by solid-state reaction method in an air atmosphere at a sintering temperature of $1150^{\circ}C$. The solubility limit of Mn ions in delafossite $CuAlO_2$ was found to be as low as about 3 $mol\%$. Positive Hall coefficient and the temperature dependence of conductivity established that non-doped $CuAlO_2$ ceramic is a variable-range hopping p-type semiconductor. It was found that the Mn-doping in $CuAlO_2$ rapidly reduced the hole concentration and conductivity, indicating compensation of free holes. The analysis of the magnetization data provided an evidence that antiferromagnetic superexchange interaction is the dominant mechanism of the exchange coupling between Mn ions in $CuAl_{1-x}Mn_{x}O$ alloy, leading to an almost paramagnetic behavior in this alloy.

Crystallization and conductivity of CuO--$P_{2}O_{5}$-$Nb_{2}O_{5}$-$V_{2}O_{5}$Glasses for Solid State Eletrolyte (고체전해질용 CuO-$P_{2}O_{5}$-$Nb_{2}O_{5}$-$V_{2}O_{5}$계 유리의 결정화와 전기전도도)

  • 손명모;이헌수;김종욱;김윤선;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.475-480
    • /
    • 2001
  • Glasses in he system CuO-P$_2$O$_{5}$ -Nb$_2$O$_{5}$ -Nb$_2$O$_{5}$ -V$_2$O$_{5}$ were prepared by a press-quenching method on the copper plate. the glass-ceramics from these glasses were obtained by post-heat treatment, and the crystallization behavior and DC conductivities were determined. The conductivities of the glasses were range from 10$^{-6}$ s.$cm^{-1}$ / at room temperature ,but the conductivities of the glass-ceramics were 10$^{-3}$ s.$cm^{-1}$ / increased by 10$^3$ order. The crystalline product in the glass-ceramics was CuV$_2$O$_{6}$ . the crystal growth of CuV$_2$O$_{6}$ phase increased with heat-treatment conditions. The linear relationship between il($\sigma$T) and T$^{-1}$ suggested that the electrical conduction in the present glass-ceramics would be due to a small polaron hopping(SPH) mechanism.

  • PDF

Modal Analysis and Velocity Control of Bowl Parts Feeder Activated by Piezoactuators (압전작동기로 구동 되는 보울 파트 피더의 모드 해석과 이송 속도 제어)

  • Lee, Dong-Ho;Choe, Seung-Bok;Kim, Jae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.839-847
    • /
    • 2000
  • This paper presents modal analysis and mean conveying velocity (M.C.V.) control of bowl parts feeder activated by piezoactuators. Bowl parts feeders are being widely used in many industry fields for automatic assembly line. In general, the electromagnet has been and being used as exciting actuator of these vibratory bowl feeders. However, because of complexity of its mechanism and limited capability of the electromagnet actuator, there exist various impending problems such as severe noise, nonlinear motion of parts, passive characteristics and so forth. As one of solutions for these problems, piezoelectric actuators as new actuating technology have been proposed recently to excite the bowl parts feeder. In this paper, modal analysis of the proposed model has been performed to examine the modal characteristics of the model by using commercial FEM software and modeling with respects to MCV is constructed. Finally, MCV of the parts is to be controlled to track the desired one with PID controller.

Preparation and characterization of proton exchange membranes in non-aqueous conduction (무수 전도성 양성자 교환막 제조 및 특성평가)

  • Park, Jin-Soo;Sekhon, S.S.;Baek, Ji-Suk;Yang, Tae-Hyun;Kim, Chang-Soo;Yim, Sung-Dae;Park, Gu-Gon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.282-285
    • /
    • 2009
  • This study presents preparation and characterization of composite membranes based on ionic liquids. The ionic liquids act as water in sulfonated membranes. On the behalf of ionic conduction through ionic liquid inside the membranes, non-aqueous membranes showed Arrenhius dependence on temperature with no external humidification. It was implied that hopping mechanism of proton was dominant in the ionic liquid based membranes. In addition, small angle X-ray (SAXS) studies provided the information on morphology of ionic clusters formed by the interaction between sulfonic acid groups of the polymers and ionic liquids. The SAXS spectra showed matrix peaks, ionomer peaks and Prodo's law for Nafion based composite membranes and only matrix peaks for hydrocarbon based ones. However, ionic conductivity and atomic force microscopy (AFM) images showed the clear formation of ionic clusters of the hydrocarbon based composite membranes. It implies for ionic liquid based high temperature membranes that it is important to use sulfonated polymers as solid matrix of ionic liquid which can form clear ionic clusters in SAXS spectra.

  • PDF

A Study on Electric Field Dispersion Techniques of Epoxy-Nanocomposites for Application of High Voltage Power Apparatus (고전압 전력기기응용을 위한 에폭시-나노콤포지트의 전기장 분산기술연구)

  • Lee, Chang-Hoon;Kim, Hyo-Chul;Cho, Young-Haw;Kim, Hyun;Jo, Sung-Choe;Park, Jae-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.97-97
    • /
    • 2010
  • A new electric application method was developed to prepare epoxy/organoclay nanocomposite for the electrical insulation in the AC electric fields and it could be also used in the field of various viscous polymer/organoclay systems. The applied AC electric field condition was as follows; (1) inter-electrode distance: 40 mm, (2) application voltage: 3-11 kV, (3) frequency: 60~1,000 Hz, and (4) application time: 0~60 min. To characterize the epoxy/clay nanocomposite, WAXS and TEM analyses were confirmed. In order to explain how the organic modifier affects the exfoliation phenomena, a mechanism of the oscillating collision of the quaternary ammonium head was proposed and the effects of the AC voltage and frequency and the organoclay content were studied.

  • PDF

Effect of milling on the electrical properties of Ba(Fe1/2Ta1/2)O3 ceramic

  • Mahto, Uttam K.;Roy, Sumit K.;Chaudhuri, S.;Prasad, K.
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.181-192
    • /
    • 2016
  • In this work effect of high energy milling on the structural and electrical properties of $Ba(Fe_{1/2}Ta_{1/2})O_3$ (BFT) ceramic synthesized using standard solid-state reaction method were investigated. X-ray diffraction studies indicated that the unit cell structure for all the samples to be hexagonal (space group: P3m1). FTIR spectra also confirmed the formation of BFT without any new phase. The milled (10 h) BFT ceramic showed the formation of small grain sizes (<$2{\mu}m$) which is beneficial for dielectric applications in high density integrated devices. Besides, the milled (10 h) BFT ceramic sample exhibited superior dielectric properties (enhancement in ${\varepsilon}^{\prime}-value$ and reduction in $tg{\delta}-value$) compared to un-milled one. Impedance analysis indicated the negative temperature coefficient of resistance (NTCR) character. The correlated barrier hopping model (jump relaxation type) is found to successfully explain the mechanism of charge transport in present ceramic samples.

The Fabrication and Characteristics of Dye-sensitized Solar Cells (DSSCs) Using the Patterned TiO2 Films

  • Choe, Eun-Chang;Seo, Yeong-Ho;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.445.1-445.1
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) have been widely investigated as a next-generation solar cell because of their simple structure and low manufacturing cost. The $TiO_2$ film with thickness of $8{\sim}10{\mu}m$, which consists of nanoparticles, acts as both a scaffold with a high surface-to-volume ratio for the dye loading and a pathway to remove the electrons. However, charge carriers have to move across many particle boundaries by a hopping mechanism. So, one dimensional nanostructures such as nanotubes, nanorods and nanowires should improve charge carrier transportation by providing a facile direct electron pathway and lowering the diffusion resistance. However, the efficiencies of DSSCs using one dimensional nanostructures are less than the $TiO_2$ nanoparticle-based DSSCs. In this work, the patterned $TiO_2$ film with thickness of $3{\mu}m$ was deposited using photolithography process to decrease of electron pathway and increase of surface area and transmittance of $TiO_2$ films. Properties of the patterned $TiO_2$ films were investigated by various analysis method such as X-ray diffraction, field emission scanning electron microscopy (FESEM) and UV-visible spectrophotometer.

  • PDF