• Title/Summary/Keyword: Hopping conduction

Search Result 84, Processing Time 0.036 seconds

A study on the properties of thermally stimulated current of $(Sr_{0.85}-Ca_{0.15})$$TiO_3$ grain boundary layer ceramic ($(Sr_{0.85}-Ca_{0.15})$$TiO_3$ 입계층 세라믹의 열자력전류 특성에 관한 연구)

  • 김진사;김성열;유영각;최운식;이준웅
    • Electrical & Electronic Materials
    • /
    • v.9 no.4
    • /
    • pp.396-403
    • /
    • 1996
  • In this paper, the (S $r_{0.85}$.C $a_{0.15}$)Ti $O_{3}$ of paraelectric grain boundary layer (GBL) ceramics were fabricated, and the analysis of microstructuye and the thermally stimulated current(TSC) were investigated for understanding effects of GBL's interfacial phenomenon on variations of electrical properties. As a result, the three peaks of .alpha., .alpha. and .betha. were obtained at the temperature of -20 [.deg. C], 20[.deg. C] and 80[.deg. C], respectively. The origins of these peaks are that the .alpha. peak observed at -20[.deg. C] looks like to be ascribed to the ionization excitation from donor level in the grain, and the .alpha.' peak observed at 20[.deg. C] appears to show up by detrap of the trapped carrier of border between the oxidation layer and the grain, and the .betha. peak observed at 80[.deg. C] seems to be resulted from hopping conduction of existing carrier in the trap site of the border between the oxidation and second phase. and second phase.

  • PDF

Electrical Conduction Property of the Carbon Black-Filled Polyethylene Matrix Composites Below the Percolation Threshold (문턱스며들기 이하 카본블랙 충진 폴리에칠렌기지 복합재료의 전기전도 특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.271-277
    • /
    • 2010
  • In this paper two aspects of the percolation and conductivity of carbon black-filled polyethylene matrix composites will be discussed. Firstly, the percolation behavior, the critical exponent of conductivity of these composites, are discussed based on studying the whole change of resistivity, the relationship between frequency and relative permittivity or ac conductivity. There are two transitions of resistivity for carbon black filling. Below the first transition, resistivity shows an ohmic behavior and its value is almost the same as that of the matrix. Between the first and second transition, the change in resistivity is very sharp, and a non-ohmic electric field dependence of current has been observed. Secondly, the electrical conduction property of the carbon black-filled polyethylene matrix composites below the percolation threshold is discussed with the hopping conduction model. This study investigates the electrical conduction property of the composites below the percolation threshold based on the frequency dependence of conductivity in the range of 20 Hz to 1 MHz. There are two components for the observed ac loss current. One is independent of frequency that becomes prevalent in low frequencies just below the percolation threshold and under a high electrical field. The other is proportional to the frequency of the applied ac voltage in high frequencies and its origin is not clear. These results support the conclusion that the electrical conduction mechanism below the percolation threshold is tunneling.

Dielectric Properties in Bi2O3-PbO-SiO2 Glass containing B2O3 (B2O3를 함유한 Bi2O3-PbO-SiO2계 유리의 유전적 특성)

  • Joung, Maeng-Sig;Lee, Su-Dae
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.23-29
    • /
    • 2001
  • In the SP series of glasses, the formation of droplet is well done with increasing PbO. But in the case SP-1, droplet could not be observed in low concentration PbO. These results are considered that PbO does the role of a network modifier, so the crosslinking break down by $SiO_2$. But, in the glasses contained PbO above 50 mol%, glasses are formeddue to $Pb^{4+}$ ion does the role of a network former. As a result of electrical conductivity analysis for SP series of glasses, the electrical conduction is due to bipolaron at high temperature, and it is due to single polaron hopping at low temperature. In the SP series of glasses, electrical conduction mechanism coincide with the correlated-barrier hopping(CBH) model.

  • PDF

Conduction Mechanism for PAP and Comparison of Physical Properties of PAP with other Polyaniline-based Conducting Polymers

  • Choi, Kyung-Moon;Lee, Eun-Ju;Kim, Keu-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.371-376
    • /
    • 1990
  • Polyaniline perchlorate (PAP) was synthesized by the chemical oxidation of aniline using ferric perchlorate as a strong oxidant. The electrical conductivity of PAP was measured at temperatures from - 170 to 25$^{\circ}C$. It is suggested from the conductivity measurements that the conduction mechanism for PAP is a polaron hopping conduction. From the dependence of resistivity on the reciprocal temperature, the activation energy was computed to be 0.072 eV. From the comparison of the ESR parameterks and conductivity at 25$^{\circ}C$ for the polyaniline-based conducting polymers, the conductivities of PAP, PATFB and PATS increase with increasing ${\Delta}H_{pp}$, decreasing A/B ratio and decreasing g-value, respectively. It is shown by TGA results for PAP, PATFB and PATS that the maximum weight loss rates (Pr) are 0.185 (at 269$^{\circ}C$ ), 0.366 (at 324$^{\circ}C$) and 0.23 mg/min (at 338$^{\circ}C$), respectively.

EPR and Electrical Studies in Layered Na1.9Li0.1Ti3O7 and its Copper Doped Derivatives (층상구조의 Na1.9Li0.1Ti3O7과 그 구리 혼입 유도체의 EPR 및 전기적 연구)

  • Pal, D.;Chand, Prem;Tandon, R.P.;Shripal
    • Journal of the Korean Chemical Society
    • /
    • v.49 no.6
    • /
    • pp.560-566
    • /
    • 2005
  • Sintered ceramic samples of pure and some copper doped layered sodium lithium tri-titanate ($Na_{1.9}Li_{0.1}Ti_{3-X}Cu_XO_{7-X}$) materials with different dopant molar percentages (0.0$Cu^{2+}$ at $Ti^{4+}$ sites in the lattice is proposed in this paper. Furthermore, three distinct regions have been identified in log(${\sigma}_{d.c.}T$) versus 1000/T plots. The lowest temperature region is attributed to electronic hopping conduction(polaron) for all copper doped derivatives and ionic conduction for lithium substituted $Na_2Ti_3O_7$.The mechanism of conduction in the intermediate region is associated interlayer ionic conduction and in the highest temperature region is associated modified interlayer ionic conduction.

Low-Temperature Electron Transport Properties of La2/3+xTiO3-δ (x = 0, 0.13) (저온에서 La2/3+xTiO3-δ (x = 0, 0.13)세라믹스의 전자전도특성)

  • Jung, Woo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.604-609
    • /
    • 2014
  • The thermoelectric power and dc conductivity of $La_{2/3+x}TiO_{3-{\delta}}$ (x = 0, 0.13) were investigated. The thermoelectric power was negative between 80K and 300K. The measured thermoelectric power of x = 0.13 increased linearly with increased temperatures and was represented by $S_0+BT$. The x = 0 sample exhibited insulating behavior, while the x = 0.13 sample showed metallic behavior. The electric resistivity of x = 0.13 had a linear temperature dependence at high temperatures and a T3/2 dependence below about 100K. On the other hand, the electric resistivity of x = 0 has a linear relation between $ln{\rho}/T$ and 1/T in the range of 200 to 300K, and the activation energy for small polaron hopping was 0.23 eV. The temperature dependence of thermoelectric power and the resistivity of x = 0 suggests that the charge carriers responsible for conduction are strongly localized. This temperature dependence indicates that the charge carrier (x = 0) is an adiabatic small polaron. These experimental results are interpreted in terms of spin (x = 0.13) and small polaron (x = 0) hopping of almost localized Ti 3d electrons.

Electrical Properties of Polyaniline Blends (폴리아닐린 블랜드의 전기적 특성)

  • Kim, Won-Jung;Kim, Yun-Sang;Kim, Tae-Young;Kim, Jong-Eun;Suh, Kwang-S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.95-97
    • /
    • 2003
  • This paper describes electrical properties such as electrical conduction characteristics and space charge distributions of polyaniline/polystyrene conducting blends. It is interesting to note that the charging current decreased as the temperature was elevated when DC voltage was applied, and also the hopping distance decreased with the increase of temperature for the PANI/HIPS blends, while generally, the hopping distance decreases as the charging current increases. It is exposed that this result is opposed to widely known phenomenon. It could be examined viewing space charge distributions by a pulsed electroacoustic (PEA) method.

  • PDF

Electical Transport Properties of La$_{1.6}$Ca$_{1.4}$Mn$_2$O$_{7.07}$ System (La$_{1.6}$Ca$_{1.4}$Mn$_2$O$_{7.07}$의 전기전도특성)

  • 정우환
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.843-847
    • /
    • 1999
  • The dc resistivity dc magnetization and thermopower of layered perovskite La1.6Ca1.4Mn2O7.07 have been studied. The ceramic sample of La1.6Ca1.4Mn2O7.07 undergoes the metal-insulator transition at 120K while a first-order phase transition from a ferromagnetic phase to a paramagnetic phae is observed at 260 K=TC This behavior is quite different from that of the well-known double exchange ferromagnets such as La1-xCaxMnO3 This phenomenon could be understood by considering the effects of the anisotropic double exchange interaction caused by two dimensional Mn-O-Mn networks in this materials. The dc magnetization between 120K and 250K is nearly constant and decreases rapidly with increasing temperature above 250K The measurements of dc resistivity and thermopower indicate that Zener polaron hopping conduction takes place above 260 K.

  • PDF

Computation of Ionic Conductivity at NASICON Solid Electrolyte (III) Na1$\longrightarrow$mid-Na$\longrightarrow$Na2 Conduction Paths (NASICON 고체 전해질의 이온 전도도 계산 (III) 전도경로가 Na1$\longrightarrow$mid-Na$\longrightarrow$Na2인경우)

  • 최진삼;서양곤;강은태
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.645-652
    • /
    • 1996
  • The ionic conductivity of NASICON (Na Super Ionic Conductor) solid electrolyte was simulated by using Monte Carlo Method (MCM)based on a hopping model. We assumed that the conduction path of Na ions is Na1→mid-Na→Na2 where the mid-Na sites are shallow potential sites to induce 'a breathing-like movement' of Na ions in the NASICON framework. The minimum of charge correlation factor Fc and the maximum of appeared at nearby x=2.0 The occupancy of mid-Na site affected the depth of potential barrier and the conduc-tivity of the NASICON. At above x=0.3 ln σT vs. 1/T* plots have been shown Arrhenius behavior but in (VWfc)vs. 1/T* have been shown the Arrhenius type tendency at x=1 MCM results accorded with the experi-mental procedure. The role of mid-Na on Na+ ion conduction could be explained by an additional driving force and a breating-like movement model for motions of Na+ ions in the NASICON framework. As we couldn't clearly remarked the model which is the better it seems reasonable to conclude that these hypothesies are suitable to explain the FIC behavior at NASICON.

  • PDF

Numerical Analysis about the Time Characteristics of Space Charge Distribution and Measured Current in LDPE (LDPE에서 공간전하분포와 측정전류의 시간특성에 대한 수치해석)

  • Hwang, Bo-Seung;Park, Dae-Hui;Nam, Seok-Hyeon;Gwon, Yun-Hyeok;Han, Min-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.502-509
    • /
    • 2000
  • In this paper in order to evaluat quantitavely the formation mechanism of space charge and its effects on the conduction characteristics in LDPE we have carried out the numerical analysis on the basis of experimental results of space charge distribution cathode field and current with time which had been simultaneously measured at applied field of 50kV/mm and room temperature. As the models for numerical analysis we employ the Richarson-Schottky theory for charge injection from electrode into LDPE and the band-tail conduction at crystalline regions and the hopping conduction by traps which mainly exist at the interface regions of crystalline-amorphous region for charge transport in LDPE. Futhermore in order to investigate the influence of physical parameters on the time characteristcs of space charge distribution and measured current we have changed the values of trap density activation energies for charge injection and transport and have analyzed their effects.

  • PDF