• Title/Summary/Keyword: Hopkinson Pressure Bar test

Search Result 50, Processing Time 0.028 seconds

Analysis of Compressive Deformation Behaviors of Aluminum Alloy Using a Split Hopkinson Pressure Bar Test with an Acoustic Emission Technique (SHPB 시험과 음향방출법을 이용한 알루미늄 합금의 압축 변형거동 분석)

  • Kim, Jong-Tak;Woo, Sung-Choong;Sakong, Jae;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.891-897
    • /
    • 2013
  • In this study, the compressive deformation behaviors of aluminum alloy under high strain rates were investigated by means of a SHPB test. An acoustic emission (AE) technique was also employed to monitor the signals detected from the deformation during the entire impact by using an AE sensor connected to the specimen with a waveguide in real time. AE signals were analyzed in terms of AE amplitude, AE energy and peak frequency. The impacted specimen surface and side area were observed after the test to identify the particular features in the AE signal corresponding to the specific types of damage mechanisms. As the strain increased, the AE amplitude and AE energy increased whereas the AE peak frequency decreased. It was elucidated that each AE signal was closely associated with the specific damage mechanism in the material.

A Study on the Dynamic Behavior of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 동적 변형 거동에 관한 연구)

  • Seo, Yongseok;Lee, Young-Shin;Song, Ohseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.206-216
    • /
    • 2017
  • This paper studies on the dynamic properties of Ti-6Al-4V alloy. After forming the four different micro structures(equiaxed, lamellar, and 2 bimodals) through heat treatments, static and dynamic properties of each structure were investigated quantitatively. Dynamic behaviors of the alloy are observed by the compressive split Hopkinson pressure bar(SHPB) tests. In additon, parameters of Johnson-Cook equation were determined from the SHPB test results. In order to verify the suitability of the parameters, high velocity impact tests were performed and the results were compared with the numerical analysis results. Although the flow stress and the fracture strain of the bimodal structures were higher than those of the equiaxed structure at the static tests, the superior dynamic properties were observed at the equiaxed structure due to the effects of higher maximum flow stress and fracture strain. From the numerical analysis, J-C parameters which are determined on this study describe well the dynamic behavior of Ti-6Al-4V alloy. Experimental and analysis results are consistent with ${\pm}5%$ of an average error.

Reliability Estimation and Dynamic Deformation of Polymeric Material Using SHPB Technique and Probability Theory (SHPB 기법과 확률이론을 이용한 고분자재료의 동적거동특성 및 건전성 평가)

  • Lee, Ouk-Sub;Kim, Dong-Hyeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.740-753
    • /
    • 2008
  • The conventional Split Hopkinson Pressure Bar (C-SHPB) technique with aluminum pressure bars to achieve a closer impedance match between the pressure bars and the specimen materials such as hot temperature degraded POM (Poly Oxy Methylene) and PP (Poly Propylene) to obtain more distinguishable experimental signals is used to obtain a dynamic behavior of material deformation under a high strain rate loading condition. An experimental modification with Pulse shaper is introduced to reduce the nonequilibrium on the dynamic material response during a short test period to increase the rise time of the incident pulse for two polymeric materials. For the dynamic stress strain curve obtained from SHPB experiment under high strain rate, the Johnson-Cook model is applied as a constitutive equation, and we verify the applicability of this constitutive equation to the probabilistic reliability estimation method. The methodology to estimate the reliability using the probabilistic method such as the FORM and the SORM has been proposed, after compose the limit state function using Johnson-Cook model. It is found that the failure probability estimated by using the SORM is more reliable than those of the FORM, and the failure probability increases with the increase of applied stress. Moreover, it is noted that the parameters of Johnson-Cook model such as A and n, and applied stress affect the failure probability more than the other random variables according to the sensitivity analysis.

Parameter Study of Impact Characteristics for a Vacuum Interrupter Considering Dynamic Material Properties (동적 물성치를 고려한 진공 인터럽터 충격특성의 영향인자 분석)

  • Lim, Ji-Ho;Song, Jeong-Han;Huh, Hoon;Park, Woo-Jin;Oh, Il-Seong;Ahn, Gil-Young;Choe, Jong-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.924-931
    • /
    • 2002
  • Vacuum interrupters in order to be used in various switch-gear components such as circuit breakers, distribution switches, contactors, etc. spread the arc uniformly over the surface of the contacts. The electrodes of vacuum interrupters are made of sinter-forged Cu-Cr materials for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain rate at that velocity, the dynamic behavior of the sinter-forged Cu-Cr is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain rate is obtained from the split Hopkinson pressure bar test using disc-type specimens. Experimental results from both quasi-static and dynamic compressive tests are Interpolated to construct the Johnson-Cook model as the constitutive relation that should be applied to simulation of the dynamic behavior of the electrodes. The impact characteristics of a vacuum interrupter are investigated with computer simulations by changing the value of five parameters such as the initial velocity of a movable electrode, the added mass of a movable electrode, the wipe spring constant, initial offset of a wipe spring and the virtual fixed spring constant.

Dynamic Material Property of the Sinter-Forged Cu-Cr Alloys with the Variation of Chrome Content (구리-크롬 소결단조 합금의 크롬 함유량 변화에 따른 동적 물성특성)

  • Song Jung-Han;Huh Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.670-677
    • /
    • 2006
  • Vacuum interrupters are used in various switch-gear components such as circuit breakers, distribution switches, contactors. The electrodes of a vacuum interrupter are manufactured of sinter-forged Cu-Cr material for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain-rate at the given velocity, the dynamic material property of the sinter-forged Cu-Cr alloy is important to design the vacuum interrupter reliably and to identify the impact characteristics of a vacuum interrupter accurately. This paper is concerned with the dynamic material properties of sinter-forged Cu-Cr alloy for various strain rates. The amount of chrome is varied from 10 wt% to 30 wt% in order to investigate the influence of the chrome content on the dynamic material property. The high speed tensile test machine is utilized in order to identify the dynamic property of the Cu-Cr alloy at the intermediate strain-rate and the split Hopkinson pressure bar is used at the high strain-rate. Experimental results from both the quasi-static and the high strain-rate up to the 5000/sec are interpolated with respect to the amount of chrome in order to construct the Johnson-Cook and the modified Johnson-Cook model as the constitutive relation that should be applied to numerical simulation of the impact behavior of electrodes.

Impact Tensile Properties and Intergranular Fracture Behavior with Strain Rate Variations of Al-M g-X (X = Cr,Si) Alloy

  • Chang-Suk Han;Min-Gyu Chun;Sung-Soon Park;Seung-In Lim
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.330-340
    • /
    • 2024
  • Al-Mg-Si alloys are light weight and have excellent corrosion resistance, and are attracting attention as a liner material for high-pressure hydrogen containers in hydrogen fuel cell vehicles. Because it has excellent plastic hardening properties, it is also applied to car body panel materials, but it is moderate in strength, so research to improve the strength by adding Si-rich or Cu is in progress. So far, the authors have conducted research on the intergranular fracture of alloys with excessive Si addition from the macroscopic mechanical point of view, such as specimen shape. To evaluate their impact tensile properties, the split-Hopkinson bar impact test was performed using thin plate specimens of coarse and fine grain alloys of Al-Mg-X (X = Cr,Si) alloy. The effect of the shape of the specimen on the characteristics was studied through finite element method (FEM) analysis. As a result, it was found that the intergranular fracture of the alloy with excessive Si depended on the specimen width (W)/grain size (d), which can be expressed by the specimen size and grain size. As W/d decreases, the intergranular fracture transforms into a transgranular fracture. As the strain rate increases, the fracture elongation decreases, and the fracture surface of the intergranular fracture becomes more brittle. It was confirmed that intergranular fracture occurred in the high strain rate region even in materials with small grain sizes.

Temperature Dependence of Dynamic Behavior of Commercially Pure Titanium by the Compression Test (CP-Ti의 동적거동에 미치는 온도의 영향)

  • Lee, Su-Min;Seo, Song-Won;Park, Kyoung-Joon;Min, Oak-Key
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1152-1158
    • /
    • 2003
  • The mechanical behavior of a commercially pure titanium (CP-Ti) is investigated at high temperature Split Hopkinson Pressure Bar (SHPB) compression test with high strain-rate. Tests are performed over a temperature range from room temperature to 1000$^{\circ}C$ with interval of 200$^{\circ}C$ and a strain-rate range of 1900 ∼ 2000/sec. The true flow stress-true strain relations depending on temperature are achieved in these tests. For construction of constitutive equation from the true flow stress-true strain relation, parameters for the Johnson-Cook constitutive equation is determined. And the modified Johnson-Cook equation is used for investigation of behavior of flow stress in vicinity of recrystalization temperature. The Modified Johnson-Cook constitutive equation is more suitable in expressing the dynamic behavior of a CP-Ti at high temperature, i.e. about recrystalization temperature.

A study about shape processing for the bend of the Copper-Tube that use Hair Pin Bending Machine (Hair Pin Bending Machine을 이용한 동 튜브 굽힘 성형가공에 관한 연구)

  • Kang, Heung-Sik;Kim, Dong-Sung;Heo, Sin;Hong, Sung-In
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1705-1708
    • /
    • 2003
  • The purpose of this study is to investigate the manufacturing technique on the U type Draw-Bending of inner grooved tube. This bending process make the U shape tube by Hair Pin Bending machine. The U type tube requires the quality of product that satisfy sufficient conditions for a heat exchanger. The mandrel components act the important roles that prevent wrinkles and keep the shape of cross section of bended tube at bending process. We performed the FEM simulation using LS-DYNA software and the bending test of inner groove tube and then, compared bending simulation with bending test results about mandrel ball diameter, mandrel position and optimal clearance between mandrel and tube.

  • PDF

An Experimental Study on the Dynamic Increase Factor and Strain Rate Dependency of the Tensile Strength of Rock Materials (암석재료 인장강도의 동적 증가계수 및 변형률 속도 의존성에 대한 실험적 연구)

  • Oh, Se-Wook;Choi, Byung-Hee;Min, Gyeong-Jo;Jung, Yong-Bok;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.1
    • /
    • pp.10-21
    • /
    • 2021
  • Brittle materials such as rocks and concretes exhibit large strain-rate dependency under dynamic loading conditions. This means that the mechanical properties of such materials can significantly be varied according to load velocity. Thus, the strain-rate dependency is recognized as one of the most important considerations in solving problems of blast engineering or rock dynamics. Unfortunately, however, studies for characterizing the dynamic properties of domestic rocks and other brittle materials are still insufficient in the country. In this study, dynamic tensile tests were conducted using the Hopkinson pressure bar apparatus to characterize the dynamic properties of Geochang granite and high-strength concrete specimens. The dynamic Brazilian disc test, which is suggested by ISRM, and the spalling method were applied. In general, the latter is believed to have some advantages in experiments under high-strain rate deformation. It was found from the tests that there were no significant difference between the dynamic tensile strengths obtained from the two different test methods for the two materials given. However, this was not the expected result before the tests. Actually, authors expected that there be some differences between them. Hence, it is thought that further investigations are needed to clarify this results.

The effect of temperature in high temperature SHPB test (고온 SHPB실험에서 온도의 영향)

  • Park, Kyoung-Joon;Yang, Hyun-Mo;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.349-354
    • /
    • 2001
  • The split Hopkinson pressure bar has been used for a high strain rate impact test. Also it has been developed and modified for compression, shear, tension, elevated temperature and subzero tests. In this paper, SHPB compression tests have been performed with pure titanium at elevated temperatures. The range of temperature is from room temperature to $1000^{\circ}C$ with interval of $200^{\circ}C$. To raise temperature of the specimen, a radiant heater which is composed of a pair of ellipsoidal cavities and halogen lamps is developed at high temperature SHPB test. There are some difficulties in a high temperature test such as temperature gradient, lubrication and prevention of oxidation of specimen. The temperature gradient of specimen is affected by the variation of temperature. Barreling occurred at not properly lubricated specimen. Stress-strain relations of pure titanium have been obtained in the range of strain rate at $1900/sec{\sim}2000/sec$ and temperature at $25^{\circ}C{\sim}1000^{\circ}C$.

  • PDF