• 제목/요약/키워드: Hopfield network

검색결과 131건 처리시간 0.03초

개선된 Hopfield Network 모델과 Layer assignment 문제에의 응용 (A Modified Hopfield Network and Its Application To The Layer Assignment)

  • 김계현;황희용;이종호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 하계학술대회 논문집
    • /
    • pp.539-541
    • /
    • 1990
  • Hopfield crossbar assosiative network을 기초로한 개선된 Hopfield neural network을 제안하고, 이 network이 NP-complete 문제에 대한 효과적인 tool임을 보였다. 이 모델을 YLSI routing을 위한 layer assignment 문제에 응용하였고, 결과 이 개선된 Hopfield model이 stability와 accuracy를 향상시킴을 보여 주었다.

  • PDF

선형 선처리 방식에 의한 홉필드 네트웍의 성능 분석 (Performance analysis of linear pre-processing hopfield network)

  • 고영훈;이수종;노흥식
    • 정보학연구
    • /
    • 제7권2호
    • /
    • pp.43-54
    • /
    • 2004
  • 홉필드 네트웍(Hopfield Network)은 존 홉필드(John J. Hopfield) 박사에 의해 제안된 이래 패턴인식과 최적화 문제에 활용되어 왔다. 특히 리(Jian-Hua Li)에 의해 제안된 방식은 SVD(singular value decomposition) 기법을 사용하여 입력패턴을 재구성함으로써 효율향상에 기여하였다. 본 논문은 리(Li)가 제안한 홉필드 네트웍에 사용할 패턴 집합의 선형 선처리 방식에 따른 성능 향상을 실험하였다. 선형 선처리 방식에 하다마드 방식과 랜덤 방식이 최대 30%, 하다마드 방식이 최대 15%의 성능이 향상되었다. 수렴시간 측면에서 보면 랜덤 방식이 최대 5 이터레이션, 하다마드 방식이 최대 2.5 이터레이션의 성능 향상을 확인하였다.

  • PDF

Hopfield Network을 이용한 작업영역 분할 (Division of Working Area using Hopfield Network)

  • 차영엽;최범식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.160-160
    • /
    • 2000
  • An optimization approach is used to solve the division problem of working area, and a cost function is defined to represent the constraints on the solution, which is then mapped onto the Hopfield neural network for minimization. Each neuron in the network represents a possible combination among many components. Division is achieved by initializing each neuron that represents a possible combination and then allowing the network settle down into a stable state. The network uses the initialized inputs and the compatibility measures among components in order to divide working area.

  • PDF

SDN 환경에서 Hopfield Network 알고리즘을 이용한 분산 컨트롤러 (Distributed controller using Hopfield Network algorithm in SDN environment)

  • 유승언;김동현;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.43-44
    • /
    • 2019
  • 본 논문에서는 머신러닝 알고리즘 중 하나인 Hopfield Network 알고리즘을 이용하여 SDN 환경에서 분산된 컨트롤러를 선택하는 모델을 제안하였다. Hopfield Network 알고리즘은 신경망의 물리적 모델로써 최적화, 연상기억 등에 사용되는데 이를 통해 효율적인 컨트롤러 동기화를 기대한다.

  • PDF

계층적 Hopfield 신경 회로망을 이용한 Optical Flow 추정 (Optical Flow Estimation Using the Hierarchical Hopfield Neural Networks)

  • 김문갑;진성일
    • 전자공학회논문지B
    • /
    • 제32B권3호
    • /
    • pp.48-56
    • /
    • 1995
  • This paper presents a method of implementing efficient optical flow estimation for dynamic scene analysis using the hierarchical Hopfield neural networks. Given the two consequent inages, Zhou and Chellappa suggested the Hopfield neural network for computing the optical flow. The major problem of this algorithm is that Zhou and Chellappa's network accompanies self-feedback term, which forces them to check the energy change every iteration and only to accept the case where the lower the energy level is guaranteed. This is not only undesirable but also inefficient in implementing the Hopfield network. The another problem is that this model cannot allow the exact computation of optical flow in the case that the disparities of the moving objects are large. This paper improves the Zhou and Chellapa's problems by modifying the structure of the network to satisfy the convergence condition of the Hopfield model and suggesting the hierarchical algorithm, which enables the computation of the optical flow using the hierarchical structure even in the presence of large disparities.

  • PDF

홉필드 신경회로망을 위한 단일전자 소자 (Single-Electron Devices for Hopfield Neural Network)

  • 유윤섭
    • 대한전자공학회논문지SD
    • /
    • 제45권6호
    • /
    • pp.16-21
    • /
    • 2008
  • 본 논문은 새롭게 제안된 단일전자 소자(single-electron device) 및 회로를 이용한 새로운 형태의 홉필드 신경회로망(Hopfield neural network)을 소개한다. 홉필드 신경회로망의 전기적 모델 내부에서 가변저항으로 사용되는 단일전자 시냅스(single-electron synapse)와 비선형 활성함수(nonlinear activation function)로 사용되는 두 단의 단일전자 인버터(single-electron inverter)를 몬테-칼로(Monte-Carlo) 방식의 단일전자 회로 시뮬레이터로 동작을 검증한다.

Hopfield Network를 이용한 사주(四柱)진단 시스템에서의 (用神) 추출 방법론 (A Methodology of Extracting Yongshin for Diagnosis of the Four Pillars Using Hopfield Network)

  • 박경숙;김정환;박민용
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.257-260
    • /
    • 1996
  • This study is about the construction of algorithm for selecting Yongshin of the Four Pillars. To emulate the method the expert uses when he select the Yongshin, we introduce the Hopfield Network. The result of the simulation classified with Yongshin is presented.

  • PDF

Hopfield 신경 회로망의 개선과 Layer Assignment 문제에의 응용 (A Modified Hopfield Network and It's application to the Layer Assignment)

  • 김규현;황희영;이종호
    • 대한전기학회논문지
    • /
    • 제40권2호
    • /
    • pp.234-237
    • /
    • 1991
  • A new neural network model, based on the Hopfield crossbar associative network, is presented and shown to be an effective tool for the NP-Complete problems. This model is applied to a class of layer assignment problems for VLSI routing. The results indicate that this modified Hopfield model, improves stability and accuracy.

  • PDF

Hopfield 신경망에 의한 비선형 계통의 파라미터 추정 (Parameter Identification of Nonlinear Systems using Hopfield Network)

  • 이기상;박태건;함재훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.710-713
    • /
    • 1995
  • Hopfield networks have been applied to the problem of linear system identification. In this paper, Hopfield network based parameter identification scheme of non-linear dynamic systems is proposed. Simulation results demonstrate that Hopfield network can be used effectively for the identification of non-linear systems assuming that the system states and their time derivatives are available. Therefore, the proposed scheme can be applied in fault detection and isolation(FDI) and adaptive control of non-linear systems where the Hopfield networks perform on-line identification of system parameters.

  • PDF

FOV 분할을 위한 Hopfield Network (Hopfield Network for Partitioning of Field of View)

  • 차영엽
    • 제어로봇시스템학회논문지
    • /
    • 제8권2호
    • /
    • pp.120-125
    • /
    • 2002
  • An optimization approach is used to partition the field of view. A cost function is defined to represent the constraints on the solution, which is then mapped onto a two-dimensional Hopfield neural network for minimization. Each neuron in the network represents a possible match between a field of view and one or multiple objects. Partition is achieved by initializing each neuron that represents a possible match and then allowing the network to settle down into a stable state. The network uses the initial inputs and the compatibility measures between a field of view and one or multiple objects to find a stable state.