• Title/Summary/Keyword: Honeycomb Sandwich

Search Result 164, Processing Time 0.024 seconds

An Experimental Study on the Mechanical Properties of T-Joints Structure using CFRP/Al Honeycomb Sandwich Composite (CFRP/Al하니콤 샌드위치 복합재 T-Joint 구조물의 기계적 물성에 대한 실험적 연구)

  • Cho, Ki-Dae;Ha, Sung-Rok;Kang, Kwang-Hee;Kim, Jie-Eok;Yang, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.313-318
    • /
    • 2012
  • Application of composite structures on naval ships strongly depends on the mechanical strength and collapse behavior of the T-joints of the whole structure. Because of the weight advantages over single skin composite and bolt fastening joining, three types of T-joints using both honeycomb sandwich composite and adhesive bonding were suggested to determine the effect of T-joint configuration. It was found that joining with a urethane foam block and overlaminates using the secondary co-bonding technique improves T-joint strength.

Flexural behavior of sandwich beams with novel triaxially woven fabric composite skins

  • Al-Fasih, M.Y.;Kueh, A.B.H.;Ibrahim, M.H.W.
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.299-308
    • /
    • 2020
  • This study aims to carry out the experimental and numerical investigation on the flexural behavior of sandwich honeycomb composite (SHC) beams reinforced with novel triaxially woven fabric composite skins. Different stacking sequences of the carbon fiber reinforcement polymer (CFRP) laminate; i.e., 0°-direction of TW (TW0), 0°-direction of UD (UD0), and 90°-direction of UD (UD90) were studied, from which the flexural behavior of SHC beam behaviors reinforced with TW0/UD0 or TW0/UD90 novel laminated skins were compared with those reinforced with UD0/90 conventional laminated skins under four-point loading. Generally, TW0/UD0 SHC beams displayed the same flexural stiffness as UD0/90 SHC beams in terms of load-deflection relationships. In contrast, TW0/UD90 SHC beams showed a 70% lower efficiency than those of UD0/90 SHC. Hence, the TW0/UD0 laminate arrangement is more effective with a mass reduction of 39% compared with UD0/90 for SHC beams, although their stiffness and shear strength are practically identical.

Structural Characterization of Repaired Sandwich Composite Laminates (샌드위치 복합재의 보수 후 특성평가)

  • Kim, Jung-Seok;Lee, Jae-Hun;Chung, Seong-Kyun;Kim, Seung-Chul;Seo, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.132-137
    • /
    • 2007
  • This paper explains compressive behaviors of sandwich composite laminates with adhesively bonded patches. The sandwich composite laminate is used for a train carbody structure and is of an aluminum honeycomb core and CF1263 woven fabric carbon/epoxy faces. The sandwich composite laminates were damaged by low velocity impact. The damaged sandwich composite laminate was repaired using scarf repair method. Then, the strength restoration of it was assessed by compressive test. From the test, it could be known that the compressive strength was restored up to 91% of undamaged one.

  • PDF

A Study on the Structural Strength Analysis according to the Core Shapes of Aluminum Sandwich Panels (알루미늄 샌드위치패널의 심재 형상에 따른 구조강도해석)

  • 배동명;손정대
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.277-284
    • /
    • 2001
  • Recently, with development of mechanics of materials, as pursuing the high speed of the ships, a demanding of composite construction which satisfies high strength and low weight at the same time is iner casing. A sandwich element is a type of composite construction, which is composed of thin, strong, stiff and relatively high density faces and a think, light, and weaker core material. As 2nd moment is increased by faces is separated from the neutral axis farther, a sandwich element is most effective light structural form. In this paper, the make a comparative study Aluminum Honeycomb Sandwich Panel(AHSP) and Aluminum Pyramid Sandwich Panel(APSP).

  • PDF

Low Temperature Cure Film Adhesive

  • Liang, Bin;Zhao, Shenglong
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2004
  • A novel carboxyl terminated butadiene-acrylonitrile (CTBN) modified, low temperature cure epoxy film adhesive was developed in this paper. It can be cured at as low as $75^{\circ}C$ for 4 hours with a pressure of 0.1MPa. After post cure at $120^{\circ}C$ for 2 hours, the bonding strengths of Phosphoric Acid Anodizing(PAA) surface treated aluminum adherend were similar to those of structural film adhesives curing at $120^{\circ}C$. It is suitable to bond both metal/composite laminate-to-laminate and laminate to honeycomb structure.

  • PDF

A Study on the Damage of Satellite caused by Hypervelocity Impact with Orbital Debris (우주파편 초고속충돌에 의한 위성구조체의 손상에 관한 연구)

  • Kang, Pil-Seong;Im, Chan-Kyung;Youn, Sung-Kie;Lim, Jae-Hyuk;Hwang, Do-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.555-563
    • /
    • 2012
  • In earth orbit, a great number of orbital debris move around in extremely high velocity, and they become serious threats to satellites. In this study, smoothed particle hydrodynamics(SPH) is used to analyze the damage of a low earth orbit satellite due to the hypervelocity impact with orbital debris. The damage of honeycomb sandwich panel(HC/SP) used for walls of a satellite is analyzed with respect to impact velocities. For the additional analysis to examine the safety of interior components of the satellite, an attached electronic box and an offset electronic box are considered. As a result of the analysis considering the orbital debris having a probability of collision more than 2% at altitude of 685km, it is shown that the HC/SP can be perforated but only small craters are formed on both the attached electronic box and the offset electronic box.

Study on Low Temperature Environmental Characteristics of Sandwich Core Made with 3D Printer (3D 프린터로 제작한 샌드위치 코어의 저온 환경 특성 연구)

  • Ahn, Ju-Hun;Choi, Ju-Hwan;Hong, Seung-Lae;Lee, Chang-Yull
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.18-25
    • /
    • 2019
  • Studies on the fabrication of UAV by using 3D printer have been actively carried out. However, research on structural load characteristics in low temperature environment is insufficient. In this study, a composite sandwich structure with ordinary orbs structure was proposed, and the load characteristics for temperature condition changes were analyzed. The ordinary orbs and honeycomb structures were fabricated by using a FDM type 3D printer. The bending load test was carried out at room temperature and low temperature condition. The low temperature condition was classified into four cases. Bending load tests were performed in a low temperature chamber to maintain the required temperature conditions. As a result of the test, it was confirmed that the proposed ordinary orbs structure had better load characteristics at low temperatures than the existing honeycomb structure.

An Investigation on the Strength of Insert Joints of Composite-Honeycomb Sandwich Structures (복합재 -하니콤 샌드위치 구조물의 인써트 조인트 강도 특성 연구)

  • Choi, Ji-Young;Song, Keun-Il;Choi, Jin-Ho;Kim, Kwang-Soo;Jang, Young-Soon;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.26-33
    • /
    • 2007
  • Pull-out and shear strengths of insert Joints of sandwich structure were investigated by experiment. Specimens were prepared by cocuring of nomex honeycomb core and carbon-epoxy composite face using an adhesive FM73. A total of 75 specimens with 10 different types depending on the core height and density, face thickness, and loading direction were tested. In the test under pull-out loading, although both the core height and density affect the failure loads, the effect of cell density is more serious. Dominant factor fur failure loads of the joints under shear loading is face thickness and the effect of core height is negligible. In the joint with same dimension, failure loads vary depending on the potted area of the core, particularly in the pull-out test.

A Study on Flexural Behaviors of Sandwich Composites with Facesheets of Unequal Thickness (면재 두께가 다른 샌드위치 복합재의 굽힘 거동 연구)

  • Shin, Kwang-Bok;Lee, Jae-Youl;Ryu, Bong-Jo;Lee, Sang-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.201-210
    • /
    • 2007
  • Sandwich composites made of glass fabric epoxy facesheets with aluminum honeycomb core or balsa core is considered for the structural design of bodyshell of a Korean Low Floor Bus. Initially, in order to select the optimal facesheet and core materials in design stage, the flexural response of a sandwich composite is a critical importance. In this study, theoretical formula which could easily and quickly evaluate and obtain the flexural responses such as deflection and flexural stiffness of a sandwich composite subjected to external load was established. This theory could calculate the flexural responses of sandwich composites with narrow as well as wide width and with facesheets of unequal thickness, and also distinguish between the bending and shear effects of deflection. Finite element analysis using ANSYS V10.0 was used to offer the best elements for real sandwich composites, and flexural test according to ASTM C393 was conducted to compare with the results of theoretical formula and finite element analysis. The results show that the flexural responses of sandwich composites using proposed theoretical formula is in good agreement with those of experiment and finite element method.

A Study on Manufacturing Technology and Evaluation of the Structural Integrity of a Sandwich Composite Train Roof Structure (샌드위치 복합재 철도차량 루프구조물의 구조 안전성 평가 및 제작기술 연구)

  • Shin Kwang-Bok;;;Lee Sang-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.43-49
    • /
    • 2006
  • We have evaluated the structural integrity of a sandwich composite train roof structure that can be a lightweight, cost saving solution to large structural components for rail vehicles in design stages. The sandwich composite train roof structure was 11.45 meters long and 1.76 meters wide. The finite element analysis was used to calculate the stresses, deflections and natural frequencies of the sandwich composite train roof against the weight of air-conditioned system. The 3D sandwich finite element model was introduced to examine the structural behavior of the hollow aluminum extrusion frames joined to both sides of the sandwich composite train roof. The results shown that the structural performance of the sandwich composite train roof under loading conditions specified is satisfaction and the use of aluminum reinforced frame and aluminum honeycomb core is beneficial with regard to weight saving and structural performance in comparison with steel reinforced frame and polyurethane foam core. Also, we have manufactured prototype of sandwich composite train roof structure on the basis of analysis results.