• Title/Summary/Keyword: Homologous search

Search Result 34, Processing Time 0.029 seconds

Differentially Expressed Genes of Potentially Allelopathic Rice in Response against Barnyardgrass

  • Junaedi, Ahmad;Jung, Woo-Suk;Chung, Ill-Min;Kim, Kwang-Ho
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.231-236
    • /
    • 2007
  • Differentially expressed genes(DEG) were identified in a rice variety, Sathi, an indica type showing high allelopathic potential against barnyardgrass(Echinochloa crus-galli(L.) Beauv. var. frumentaceae). Rice plants were grown with and without barnyardgrass and total RNA was extracted from rice leaves at 45 days after seeding. DEG full-screening was performed by $GeneFishing^{TM}$ method. The differentially expressed bands were re-amplified and sequenced, then analyzed by Basic Local Alignment Search Tool(BLAST) searching for homology sequence identification. Gel electrophoresis showed nine possible genes associated with allelopathic potential in Sathi, six genes(namely DEG-1, 4, 5, 7, 8, and 9) showed higher expression, and three genes(DEG-2, 3 and 6) showed lower expression as compared to the control. cDNA sequence analysis showed that DEG-7 and DEG-9 had the same sequence. From RT PCR results, DEG-6 and DEG-7 were considered as true DEG, whereas DEG-1, 2, 3, 4, 5, and 8 were considered as putative DEG. Results from blast-n and blast-x search suggested that DEG-1 is homologous to a gene for S-adenosylmethionine synthetase, DEG-2 is homologous to a chloroplast gene for ribulose 1,5-bisphosphate carboxylase large subunit, DEG-8 is homologous to oxysterol-binding protein with an 85.7% sequence similarity, DEG-5 is homologous to histone 2B protein with a 47.9% sequence similarity, DEG-6 is homologous to nicotineamine aminotransferase with a 33.1% sequence similarity, DEG-3 has 98.8% similarity with nucleotides sequence that has 33.1% similarity with oxygen evolving complex protein in photosystem II, DEG-7 is homologous to nucleotides sequence that may relate with putative serin/threonine protein kinase and putative transposable element, and DEG-4 has 98.8% similarity with nucleotides sequence for an unknown protein.

  • PDF

Exploration and functional expression of homologous lipases of Candida antarctica lipase B (Candida antarctica lipase B의 상동체 효소 탐색과 발현)

  • Park, Seongsoon
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.187-193
    • /
    • 2015
  • Candida (also known as Pseudozyma) antarctica lipase B (CAL-B) has been intensely studied in academic and industrial fields. However, the research related to its homologous enzymes has been rarely reported. In the current investigation, protein sequence similarity search of CAL-B has been conducted and six homologous protein sequences were identified. After the syntheses of their codon-optimized genes, the synthetic genes have been cloned into a periplasmic expression vector to express in Escherichia coli. Among six homologous sequences, four sequences were successfully expressed in E. coli. The hydrolytic activities of the expressed proteins towards 4-nitrophenyl acetate and 4-nitrophenyl butyrate were measured and compared with those of CAL-B to identify whether the expressed proteins work as a hydrolase. It has been revealed that the expressed proteins can hydrolyze the substrates and the specific activities were determined as $(1.3-30){\times}10^{-2}{\mu}mol/min/mg$, which are lower than those of CAL-B. Among these homologous enzymes, Pseudozyma hubeiensis SY62 exhibits the comparable enantioselectivity to that of CAL-B towards the hydrolysis of (${\pm}$)-1-phenylethyl acetate.

Prediction of Protein Secondary Structure Using the Weighted Combination of Homology Information of Protein Sequences (단백질 서열의 상동 관계를 가중 조합한 단백질 이차 구조 예측)

  • Chi, Sang-mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1816-1821
    • /
    • 2016
  • Protein secondary structure is important for the study of protein evolution, structure and function of proteins which play crucial roles in most of biological processes. This paper try to effectively extract protein secondary structure information from the large protein structure database in order to predict the protein secondary structure of a query protein sequence. To find more remote homologous sequences of a query sequence in the protein database, we used PSI-BLAST which can perform gapped iterative searches and use profiles consisting of homologous protein sequences of a query protein. The secondary structures of the homologous sequences are weighed combined to the secondary structure prediction according to their relative degree of similarity to the query sequence. When homologous sequences with a neural network predictor were used, the accuracies were higher than those of current state-of-art techniques, achieving a Q3 accuracy of 92.28% and a Q8 accuracy of 88.79%.

A Performance Comparison of Protein Profiles for the Prediction of Protein Secondary Structures (단백질 이차 구조 예측을 위한 단백질 프로파일의 성능 비교)

  • Chi, Sang-Mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.26-32
    • /
    • 2018
  • The protein secondary structures are important information for studying the evolution, structure and function of proteins. Recently, deep learning methods have been actively applied to predict the secondary structure of proteins using only protein sequence information. In these methods, widely used input features are protein profiles transformed from protein sequences. In this paper, to obtain an effective protein profiles, protein profiles were constructed using protein sequence search methods such as PSI-BLAST and HHblits. We adjust the similarity threshold for determining the homologous protein sequence used in constructing the protein profile and the number of iterations of the profile construction using the homologous sequence information. We used the protein profiles as inputs to convolutional neural networks and recurrent neural networks to predict the secondary structures. The protein profile that was created by adding evolutionary information only once was effective.

Algorithm for Predicting Functionally Equivalent Proteins from BLAST and HMMER Searches

  • Yu, Dong Su;Lee, Dae-Hee;Kim, Seong Keun;Lee, Choong Hoon;Song, Ju Yeon;Kong, Eun Bae;Kim, Jihyun F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1054-1058
    • /
    • 2012
  • In order to predict biologically significant attributes such as function from protein sequences, searching against large databases for homologous proteins is a common practice. In particular, BLAST and HMMER are widely used in a variety of biological fields. However, sequence-homologous proteins determined by BLAST and proteins having the same domains predicted by HMMER are not always functionally equivalent, even though their sequences are aligning with high similarity. Thus, accurate assignment of functionally equivalent proteins from aligned sequences remains a challenge in bioinformatics. We have developed the FEP-BH algorithm to predict functionally equivalent proteins from protein-protein pairs identified by BLAST and from protein-domain pairs predicted by HMMER. When examined against domain classes of the Pfam-A seed database, FEP-BH showed 71.53% accuracy, whereas BLAST and HMMER were 57.72% and 36.62%, respectively. We expect that the FEP-BH algorithm will be effective in predicting functionally equivalent proteins from BLAST and HMMER outputs and will also suit biologists who want to search out functionally equivalent proteins from among sequence-homologous proteins.

Genetic Variation in a DNA Double Strand Break Repair Gene in Saudi Population: A Comparative Study with Worldwide Ethnic Groups

  • Areeshi, Mohammed Yahya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7091-7094
    • /
    • 2013
  • DNA repair capacity is crucial in maintaining cellular functions and homeostasis. However, it can be altered based on DNA sequence variations in DNA repair genes and this may lead to the development of many diseases including malignancies. Identification of genetic polymorphisms responsible for reduced DNA repair capacity is necessary for better prevention. Homologous recombination (HR), a major double strand break repair pathway, plays a critical role in maintaining the genome stability. The present study was performed to determine the frequency of the HR gene XRCC3 Exon 7 (C18067T, rs861539) polymorphisms in Saudi Arabian population in comparison with epidemiological studies by "MEDLINE" search to equate with global populations. The variant allelic (T) frequency of XRCC3 (C>T) was found to be 39%. Our results suggest that frequency of XRCC3 (C>T) DNA repair gene exhibits distinctive patterns compared with the Saudi Arabian population and this might be attributed to ethnic variation. The present findings may help in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.

Cellular Dynamics of Rad51 and Rad54 in Response to Postreplicative Stress and DNA Damage in HeLa Cells

  • Choi, Eui-Hwan;Yoon, Seobin;Hahn, Yoonsoo;Kim, Keun P.
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.143-150
    • /
    • 2017
  • Homologous recombination (HR) is necessary for maintenance of genomic integrity and prevention of various mutations in tumor suppressor genes and proto-oncogenes. Rad51 and Rad54 are key HR factors that cope with replication stress and DNA breaks in eukaryotes. Rad51 binds to single-stranded DNA (ssDNA) to form the presynaptic filament that promotes a homology search and DNA strand exchange, and Rad54 stimulates the strand-pairing function of Rad51. Here, we studied the molecular dynamics of Rad51 and Rad54 during the cell cycle of HeLa cells. These cells constitutively express Rad51 and Rad54 throughout the entire cell cycle, and the formation of foci immediately increased in response to various types of DNA damage and replication stress, except for caffeine, which suppressed the Rad51-dependent HR pathway. Depletion of Rad51 caused severe defects in response to postreplicative stress. Accordingly, HeLa cells were arrested at the G2-M transition although a small amount of Rad51 was steadily maintained in HeLa cells. Our results suggest that cell cycle progression and proliferation of HeLa cells can be tightly controlled by the abundance of HR proteins, which are essential for the rapid response to postreplicative stress and DNA damage stress.

Genomic Organization of ancop Gene for ${\alpha}-COP$ Homolog from Aspergillus nidulans

  • Lee, Hwan-Hee;Chae, Shun-Kee;Kim, Jeong-Yoon;Maeng, Pil-Jae;Park, Hee-Moon
    • Mycobiology
    • /
    • v.28 no.4
    • /
    • pp.171-176
    • /
    • 2000
  • We have cloned a ${\alpha}-COP$ homolog, ancop, from Aspergillus nidulans by colony hybridization of chromosome specific library using ${\alpha}-COP$ homologous fragment as a probe. The probe DNA was amplified with degenerated primers designed by comparison of conserved region of the amino acid sequences of Saccharomyces cerevisiae ${\alpha}-COP$, Homo sapiens HEP-COP, and Drosophila melanogaster ${\alpha}-COP$. Full length cDNA clone was also amplified by RT-PCR. Comparison of genomic DNA sequence with cDNA sequence obtained by RT-PCR revealed 7 introns. Amino acid sequence similarity search of the anCop with other ${\alpha}-COPs$ gave an overall identity of 52% with S. cerevisiae, 47% with human and bovine, 45% with Drosophila and Arabidopsis. In upstream region from the transcription start site, a putative TATA and CAAT motif were also identified.

  • PDF

Construction of a Genetic Information Database for Analysis of Oncolytic Viruses

  • Cho, Myeongji;Son, Hyeon Seok;Kim, Hayeon
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.90-97
    • /
    • 2020
  • Oncolytic viruses are characterized by their ability to selectively kill cancer cells, and thus they have potential for application as novel anticancer agents. Despite an increase in the number of studies on methodologies involving oncolytic viruses, bioinformatic studies generating useful data are lacking. We constructed a database for oncolytic virus research (the oncolytic virus database, OVDB) by integrating scattered genetic information on oncolytic viruses and proposed a systematic means of using the biological data in the database. Our database provides data on 14 oncolytic viral strains and other types of viruses for comparative analysis. We constructed the OVDB using the basic local alignment search tool, and therefore can provides genetic information on highly homologous oncolytic viruses. This study contributes to facilitate systematic bioinformatics research, providing valuable data for development of oncolytic virus-based anticancer therapies.

Cloning and Phylogenetic Analysis of Chitin Synthase Gene from Entomopathogenic Fungus, Beauveria brongniartii

  • Nam, Jin-Sik;Lee, Dong-Hun;Park, Ho-Yong;Bae, Kyung-Sook
    • Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.222-227
    • /
    • 1997
  • DNA fragments homologous to chitin synthase gene were amplified from the genomic DNA of Beauveria brongniartii by PCR using degenerate primers. Cloning and sequencing of the PCR-amplified fragments led to the identification of a gene, designated BbCHSl. Comparison of the deduced amino acid sequence of BbCHSl with those of other Euascomycetes revealed that BbCHSl is a gene for class II chitin synthase. The Blastp search of the deduced amino acid sequence of BbCHSl displayed the highest rate of similarity, 95.8%, with CHS2 of Metarhizium unisopliae. Phylogenetic analysis of the amino acid sequences confirmed the taxonomic and evolutionary position of B. brongniartii, which was previously derived by traditional fungal classification based on morphological features.

  • PDF