• Title/Summary/Keyword: Homogenizer

Search Result 125, Processing Time 0.025 seconds

Influence of Coating Materials and Emulsifiers on Nanoparticles in Manufacturing Process (코팅물질과 유화제가 나노입자 제조 및 안정성에 미치는 영향)

  • Kim, Byeong-Cheol;Chun, Ji-Yeon;Park, Young-Mi;Hong, Geun-Pyo;Lee, Si-Kyong;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.32 no.2
    • /
    • pp.220-227
    • /
    • 2012
  • The objective of this study was to investigate the influence of emulsion processing with various homogenization treatments on the physical properties of nanoparticles. For the manufacturing of nanoparticles, by taking the emulsion-diffusion method, various coating materials, such as gum arabic, hydroxyethyl starch, polycarprolactone, paraffin wax, ${\kappa}$-carrageenan and emulsifiers like Tween$^{(R)}$60, Tween$^{(R)}$80, monoglyceride and Pluronic$^{(R)}$F68, were added into the emulsion system. Furthermore, the various speeds (7,000 rpm to 10,000 rpm), and times (15 s to 60 s) of homogenization were treated during the emulsion- diffusion process. NEO II homomixer was the most effective homogenizer for making nanoparticles as 51 nm ($D_{10}$) and 26 nm ($D_{50}$). To manufacture smaller nanoparticles, by using NEO II homomixer, 10,000 rpm of agitation speed, polycaprolactone as coating material, and Pluronic$^{(R)}$F68 as an emulsifier were the optimum operating conditions and components. For the stability of nanoparticles for 7 days, $20^{\circ}C$ of storage temperature was appropriate to maintain the particle size. From these results, the type of homogenizer, homogenization speed, homogenization time and storage temperature could affect the particle size. Moreover, type of coating materials and emulsifier also influenced the size and stability of the nanoparticles.

The Effect of Sea Water Containing Heavy Oil on RO Membrane (유탁해수의 RO막에 대한 영향)

  • Cho, Bong-Yeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • An experimental study regarding the effect of emulsions on RO is presented. Heavy oil was added to the sea water and the distilled water separately and treated for 30 minutes by a homogenizer to make emulsions. For the case of the sea water without heavy oil the permeate decreased from the beginning of the experiment. Chloride and conductivity increased with time, due to the fouling occurring as the suspended solids in the sea water accumulated on the membrane surface. Rejection rate of salt was 99.6~99.7%. As for the sea water containing heavy oil, the permeate decreased slowly from the beginning of the experiment. This result was the same for the case of the sea water only. However. chloride and conductivity increased significantly when heavy oil was added. In the second experiment with sea water containing heavy oil, the operation time of RO was reduced considerably. With addition of oil, the chloride increased greatly, while the permeate reduced comparatively. In the experiment where emulsion of $0.3{\sim}0.8mg/{\ell}$ was supplied to RO. oil concentration was about 10ppb in the permeate at the end of the experiment. In case of the distilled water containing heavy oil. the conductivity increased. However. the permeate reduced to 30% compared to the case of the sea water containing heavy oil. The case of sea water containing heavy oil showed an opposite result, but the effect of the addition of oil on RO was significant. Oil caused fouling of the RO and the contamination of the whole system, and as the result the system could not be operated properly. As a result the membrane capacity, the amount and water quality of permeate deteriorated significantly.

  • PDF

Membrane을 이용한 고분자 합성 신공정

  • 김중현
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.1-4
    • /
    • 1996
  • 유화제의 물리화학적인 성질을 이용하여 O/W와 W/O에멀젼을 제조하는 방법(예:PIT method, D-phase method)은 이제까지 많은 연구가 진행되어 왔으며, colloid mill, homogenizer, ultrasonic emulsifier와 같은 유화장치도 지속적으로 개발 및 개선되고 있다. 하지만 이들 방법은 공정의 정확한 조절이 어려우며, 제조된 에멀젼의 입자크기 분포가 다분산적(polydispersed)이라는 단점을 가지고 있다. 이를 극복하기 위한 방법으로 1980년대 중반에 일본에서 처음으로 개발된 막유화법이 있다. 이 기술은 pouous glass membrane 가운데 기공크기(pore size)가 균일한 SPG(Shirasu Porous Glass)막을 사용하여 균일한 입자분포를 가지는 에멀젼을 제조하는 것이다. 한편 막유화에 사용되는 막이 갖추어야 할 조건은 다음과 같다.

  • PDF

기계적 교반이 팽화슬러지 부상에 미치는 영향

  • Park, Yeong-Sik;Kim, Dong-Seok
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.05a
    • /
    • pp.317-320
    • /
    • 2006
  • 20500 rpm에서 10분 교반까지 계면높이는 감소하였으나 10분 이상의 시간에서는 계면 높이가 증가하는 경향을 나타내었으며, 슬러지 농도도 10분까지 경향을 농축농도가 증가하지만 그 이상의 교반시간에서는 농도가 서서히 감소되는 경향을 나타내었다. Homogenizer의 교반에 의한 최적조건에서의 부상효율은 약 10%의 효과가 있는 것으로 나타났다. Image analyser로 교반하지 않은 경우와 교반한 경우 슬러지의 sauter mean diameter를 측정한 결과 각각 631 $\mu$m와 427 $\mu$m로 나타나 슬러지 플록의 입경이 줄어든 것으로 나타났다. 슬러지의 함수율은 10분의 교반시간까지 조금 감소하였으나 10분 이상의 교반시간에서는 슬러지 함수율이 증가하여 60분에는 99.1%까지 증가하였다.

  • PDF

The effect of the structure of each component on the o/w microemulsion droplet size and stability

  • Changgui Han;You
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.22 no.2
    • /
    • pp.20-40
    • /
    • 1996
  • The oil in water type ME of 4 component system was composed with POE monoalkyl ether and POE sorbitan monoalkyl ester as surfactant, saturated hydrocarbon, side chain structure and aromatic structure as oil, and glycerine as cosurfactant using high pressure homogenizer. The objective of this study was to examine the role of surfactant and oil structure on droplet size and stability. The experimental results showed that the droplet size was smaller with bigger polarity of oil, less hydrocarbon, longer hydrophilic chain of surfactant and higher concentration of glycerine. SQ and LP systems showed very stable but AB and ISB system unstable microemulsion.

  • PDF

A Study on Nano-emulsion for Enhanced Transdermal Delivery of Hippophae rhamnoides Leaf Extract (비타민나무 잎 추출물의 피부 흡수 증진을 위한 나노에멀젼 연구)

  • Chae, Kyo Young;Kwon, Soon Sik;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.260-265
    • /
    • 2013
  • In this study, nano-emulsions containing 0.01, 0.03, 0.05, and 0.10% ethyl acetate fraction of Hippophae rhamnoides (H. rhamnoides) leaf extracts were prepared. The particle size, particle size distribution and skin permeability of the nano-emulsions were evaluated for five weeks. Nano-emulsion was prepared by the sequential use of homogenizer and microfluidizer. Nano-emulsion containing the ethyl acetate fraction exhibited a monodispersed form. Nano-emulsion containing 0.03% ethyl acetate fraction was the most stable for five weeks. The in vitro skin permeation study of nano-emulsion containing 0.03% ethyl acetate fraction was carried out using Franz diffusion cell. The nano-emulsion showed a better skin permeability than that of O/W emulsion. These results indicate that the nano-emulsion containing the ethyl acetate fraction of H. rhamnoides leaf extract showed a remarkable stability and skin permeability than that of O/W emulsion.

Improvement of Platinum Particle Dispersion on Porous Electrode for Phosphoric Acid Fuel Cell (연료전지용 다공성전극에 있어서 백금촉매의 분산성개선)

  • Park, Jung-Il;Kim, Jo-Woong;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.224-231
    • /
    • 1990
  • To improve the dispersion of platinum catalyst, the effects of carbon black surface treatment, solvents, surfactants, and ultrasonic homogenizing were examined. Upon introducing the hydrophilic groups acting as an anchorage center of the catalyst on the surface of carbon black by oxidation, the migrating and growing of platinum particles(or ions) during reduction could be restricted. When mixed solvents, surfactants, or ultrasonic homogenizer were used to disperse catalysts on the carbon black, the dispersion of catalyst could be improved, due to the good permeation of chloroplatinic acid through the pore of carbon black. Among the impregnation methods, the method using ultrasonic homogenizer with mixed solvent was the most excellent. Using this method the particle sized could be minimized in less than $30A^{\circ}$ and distributed homogeneously.

  • PDF

Optimization of Emulsification and Spray Drying Process for the Microencapsulation of Flavor Compounds (향기성분 미세캡슐화를 위한 유화 및 분무건조 공정 최적화)

  • Cho, Young-Hee;Shin, Dong-Suck;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.132-139
    • /
    • 2000
  • This study was conducted to optimize the emulsion process and the spray drying process for the microencapsulation of flavor compounds. Using the wall system selected, emulsion process for microencapsulation was optimized on the change of the pressure of piston-type homogenizer. Emulsification pressure of 34.5 MPa was found to be the most suitable for preparing flavor emulsion. Effects of drying temperature and atomizer speed of the spray drier on total oil, surface oil, and flavor release of the flavor powder were investigated using response surface methodology. The optimum spray drying conditions for minimal surface oil and flavor release and maximum total oil were $170{\circ}C$ inlet temperature and 15,000 rpm atomizer speed. The spray-dried powder processed with the highest drying temperature showed spherically-shaped particles with smooth surface.

  • PDF

Selection of High Efficient Enzyme for Protoplasts Isolation from Mushrooms (버섯류의 원형질체 나출을 위한 고효율 효소 선발)

  • Kim, Jong-Kun;Kim, Jin-Hee;Kong, Won-Sik;Kang, Hee-Wan
    • The Korean Journal of Mycology
    • /
    • v.38 no.1
    • /
    • pp.21-24
    • /
    • 2010
  • This study was carried out to select cell wall degrading enzymes for maximizing protoplast yield from Basidiomycetes. The protoplasts were released from spore suspension, mycelia cultured on cellophane membrane, and homogenized mycelia of Flammulina velutipes using commercial cell wall degrading enzymes. The highest yield of protoplasts was obtained from the homogenized mycelia treated with the enzyme combination of $Glucanex^R$ 200G and cellulase onozuka R-10. The protocol was also available for Pleurotus ostreatus, P. eryngii, and Hypsizygus marmoreus.

It's effects for engine emission of water/oil emulsified fuel (Water/Oil 에멀젼 연료가 배출가스에 미치는 영향)

  • Kim, Moon-Chan;Lee, Chang-Suk
    • Analytical Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.159-166
    • /
    • 2008
  • In this study, the characteristics of emulsified fuel and engine emissions were studied. Emulsified fuel which composed of water and diesel was manufactured by using homogenizer and ultrasonic generator. Engine emissions were studied whit engine dinamometer. In emulsified fuel, density and viscosity were increased with increasing water contents, but viscosity was decreased over 60% of water in emulsion fuel. The emulsion type of W/O changed to that of O/W over 60% of water in emulsion fuel. In the results of engine dinamometer test, NOx concentration and smoke density were reduced with increasing water contents in emulsified fuel but reciprocal in the case of THC, CO. Temperature and power were reduced with increasing water contents in emulsion fuel. In conclusion, it seemed that using emulsified fuel for diesel engine was effective for reducing NOx concentration and smoke density.