• 제목/요약/키워드: Homogenization Model

검색결과 142건 처리시간 0.023초

A homogenization approach for uncertainty quantification of deflection in reinforced concrete beams considering microstructural variability

  • Kim, Jung J.;Fan, Tai;Reda Taha, Mahmoud M.
    • Structural Engineering and Mechanics
    • /
    • 제38권4호
    • /
    • pp.503-516
    • /
    • 2011
  • Uncertainty in concrete properties, including concrete modulus of elasticity and modulus of rupture, are predicted by developing a microstructural homogenization model. The homogenization model is developed by analyzing a concrete representative volume element (RVE) using the finite element (FE) method. The concrete RVE considers concrete as a three phase composite material including: cement paste, aggregate and interfacial transition zone (ITZ). The homogenization model allows for considering two sources of variability in concrete, randomly dispersed aggregates in the concrete matrix and uncertain mechanical properties of composite phases of concrete. Using the proposed homogenization technique, the uncertainty in concrete modulus of elasticity and modulus of rupture (described by numerical cumulative probability density function) are determined. Deflection uncertainty of reinforced concrete (RC) beams, propagated from uncertainties in concrete properties, is quantified using Monte Carlo (MC) simulation. Cracked plane frame analysis is used to account for tension stiffening in concrete. Concrete homogenization enables a unique opportunity to bridge the gap between concrete materials and structural modeling, which is necessary for realistic serviceability prediction.

Homogenization based continuum damage mechanics model for monotonic and cyclic damage evolution in 3D composites

  • Jain, Jayesh R.;Ghosh, Somnath
    • Interaction and multiscale mechanics
    • /
    • 제1권2호
    • /
    • pp.279-301
    • /
    • 2008
  • This paper develops a 3D homogenization based continuum damage mechanics (HCDM) model for fiber reinforced composites undergoing micromechanical damage under monotonic and cyclic loading. Micromechanical damage in a representative volume element (RVE) of the material occurs by fiber-matrix interfacial debonding, which is incorporated in the model through a hysteretic bilinear cohesive zone model. The proposed model expresses a damage evolution surface in the strain space in the principal damage coordinate system or PDCS. PDCS enables the model to account for the effect of non-proportional load history. The loading/unloading criterion during cyclic loading is based on the scalar product of the strain increment and the normal to the damage surface in strain space. The material constitutive law involves a fourth order orthotropic tensor with stiffness characterized as a macroscopic internal variable. Three dimensional damage in composites is accounted for through functional forms of the fourth order damage tensor in terms of components of macroscopic strain and elastic stiffness tensors. The HCDM model parameters are calibrated from homogenization of micromechanical solutions of the RVE for a few representative strain histories. The proposed model is validated by comparing results of the HCDM model with pure micromechanical analysis results followed by homogenization. Finally, the potential of HCDM model as a design tool is demonstrated through macro-micro analysis of monotonic and cyclic damage progression in composite structures.

유효계면 모델과 균질화 기법을 이용한 나노입자 복합재의 역학적 물성 예측에 관한 연구 (A study on the prediction of the mechanical properties of nanoparticulate composites using homogenization method with effect interface concept)

  • 장성민;양승화;유수영;조맹효
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.684-689
    • /
    • 2008
  • In this study, homogenization method combined with the effective interface model for the characterization of properties of the nanoparticulate composites is developed. In order to characterize particle size effect of nanocomposites, effective interface model has been developed. The application range of analytical micromechanics approach is limited because a simple analytical approach is valid only for simple and uniform geometry of fiber particles. Therefore this study focuses on the analysis of mechanical properties of the effect interface through the continuum homogenization method instead of using analytical micromechanics approach. Using the homogenization method, elastic stiffness properties of the effective interface are numerically evaluated and compared with the analytically obtained micromechanics solutions. The suggested homogenization method is expected to be applied to optimization problems for nanocomposite design.

  • PDF

One-step Monte Carlo global homogenization based on RMC code

  • Pan, Qingquan;Wang, Kan
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1209-1217
    • /
    • 2019
  • Due to the limitation of the computers, the conventional homogenization method is based on many assumptions and approximations, and some tough problems such as energy spectrum and boundary condition are faced. To deal with those problems, the Monte Carlo global homogenization is adopted. The Reactor Monte Carlo code RMC is used to study the global homogenization method, and the one-step global homogenization method is proposed. The superimposed mesh geometry is also used to divide the physical models, leading to better geometric flexibility. A set of multigroup homogenization cross sections is online generated for each mesh under the real neutron energy spectrum and boundary condition, the cross sections are adjusted by the superhomogenization method, and no leakage correction is required. During the process of superhomogenization, the author-developed reactor core program NLSP3 is used for global calculation, so the global flux distribution and equivalent homogenization cross sections could be solved simultaneously. Meanwhile, the calculated homogenization cross section could accurately reconstruct the non-homogenization flux distribution and could also be used for fine calculation. This one-step global homogenization method was tested by a PWR assembly and a small reactor model, and the results show the validity.

Effects of Ultra-high Pressure Homogenization on the Emulsifying Properties of Whey Protein Isolates under Various pH

  • Lee, Sang-Ho;Subirade, Muriel;Paquin, Paul
    • Food Science and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.324-329
    • /
    • 2008
  • The effect of ultra-high pressure homogenization on the emulsifying properties of whey protein was investigated in a model emulsion made with whey protein isolate and soya oil under various pH. The emulsifying properties, the average diameter of the oil droplets ($d_{vs}$), and the protein load, were measured for each emulsion produced at different homogenization pressures (50 to 200 MPa) and pH values (4.6 to 8.0). According to the results of variance analysis and response surface, the pH had more influence on oil droplet size and protein load than homogenization pressure. The model equations, which were obtained by response surface analysis, show that pH and homogenization pressure had the major effect on oil droplet size and protein load. Higher homogenization pressure decreased the average droplet size and the protein load. Homogenization at high pressure, as opposed to low pressure, causes no overprocessing, but the effect was pH-dependent. The average diameter of the oil droplets increased slightly by decreasing the pH from 8.0 to 6.5 and then increased dramatically toward the isoelectric point of whey protein (i.e., at pH 4.6). Moreover associated droplets were found at acidic pH and their size was increased at high temperature.

균질화기법을 이용한 다공평판의 단순화된 응력해석 (Simplified stress analysis of perforated plates using homogenization technique)

  • 이진희
    • 전산구조공학
    • /
    • 제8권3호
    • /
    • pp.51-57
    • /
    • 1995
  • 다공평판에서의 응력해석에 균질화기법이 사용되었다. 표준적인 유한요소법에 미소좌표계확장을 도입한 균질화 기법은 다공평판을 microscale 모델과 macroscale 모델로 나누어 해석한다. 같은 패턴이 반복되는 최소의 기하학적단위를 microscale에서의 단위구조로 취하여 등가물성치를 산출한다. Macroscale 모델에서는 다공평판을 구멍이 없는 일반평판으로 가정하여 앞에서 산출한 등가물성치와 주어진 경계조건을 이용하여 변위를 산출하고, microscale 모델에서 다공평판의 응력을 계산한다. 균질화기법은 다공평판외에도 기본단위의 반복도가 심한 복합구조의 응력해석에서 유용한 전처리 및 후처리 개념을 제공하며, 계산에 필요한 자유도를 현저히 줄이면서 적절한 등가물성치와 응력분포의 계산을 가능케 하여준다.

  • PDF

APOLLO3 homogenization techniques for transport core calculations-application to the ASTRID CFV core

  • Vidal, Jean-Francois;Archier, Pascal;Faure, Bastien;Jouault, Valentin;Palau, Jean-Marc;Pascal, Vincent;Rimpault, Gerald;Auffret, Fabien;Graziano, Laurent;Masiello, Emiliano;Santandrea, Simone
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1379-1387
    • /
    • 2017
  • This paper presents a comparison of homogenization techniques implemented in the APOLLO3 platform for transport core calculations: standard scalar flux weighting and new flux-moment homogenization, in different combinations with (or without) leakage models. Besides the historical B1-homogeneous model, a new B-heterogeneous one has indeed been implemented recently in the two/three-dimensional-transport solver using the method of characteristics. First analyses have been performed on a very simple Sodium Fast Reactor core with a regular hexagonal lattice. They show that using the heterogeneous leakage model in association with flux-moment homogenization strongly improves the prediction of $k_{eff}$ and void reactivity effects. These good results are confirmed when the application is done to the fissile assemblies of the more complex CFV (Low Void Effect) core of the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) project of sodium-cooled fast breeder reactor (Generation IV).

폼 구조의 유효 기계적 물성 및 열전도율 예측을 위한 균질화 데이터 기반 전이학습 프레임워크의 개발 (Development of Homogenization Data-based Transfer Learning Framework to Predict Effective Mechanical Properties and Thermal Conductivity of Foam Structures)

  • 이원주;김수한;심현종;이주호;안병혁;김유정;정상융;신현성
    • Composites Research
    • /
    • 제36권3호
    • /
    • pp.205-210
    • /
    • 2023
  • 본 연구에서는 폼 구조의 효율적인 유효 기계적 물성 및 열전도율 예측을 위한 균질화 데이터 기반 전이학습 프레임워크를 개발하였다. Eshelby 텐서 기반의 평균장 균질화(Mean-field homogenization, MFH)는 타원체 형태의 공동을 포함하는 다공성 구조의 물성을 효율적으로 예측할 수 있지만, 셀룰러(cellular) 폼 구조의 물성은 정확하게 예측하기 어렵다. 한편, 유한요소 균질화(Finite element homogenization, FEH)는 정확성은 높지만 상대적으로 높은 해석 시간을 동반한다. 본 논문에서는 평균장 균질화와 유한요소 균질화의 장점을 결합한 데이터 기반 전이학습 프레임워크(Framework)를 제안하였다. 구체적으로, 대량의 평균장 균질화 데이터를 도출하여 사전학습 모델(Pre-trained model)을 구축하고, 상대적으로 소량의 유한요소 균질화 데이터를 이용하여 미세 조정(Fine-tuning) 하였다. 제안된 프레임워크를 검증하기 위한 수치 예제를 수행하였으며, 해석 정확도를 확인하였다. 본 연구의 결과는 다양한 폼 구조를 가진 재료의 해석에 적용할 수 있을 것으로 기대한다.

ANALYSIS OF THE PERMEABILITY CHARACTERISTICS ALONG ROUGH-WALLED FRACTURES USING A HOMOGENIZATION METHOD

  • Chae, Byung-Gon;Choi, Jung-Hae;Ichikawa, Yasuaki;Seo, Yong-Seok
    • Nuclear Engineering and Technology
    • /
    • 제44권1호
    • /
    • pp.43-52
    • /
    • 2012
  • To compute a permeability coefficient along a rough fracture that takes into account the fracture geometry, this study performed detailed measurements of fracture roughness using a confocal laser scanning microscope, a quantitative analysis of roughness using a spectral analysis, and a homogenization analysis to calculate the permeability coefficient on the microand macro-scale. The homogenization analysis is a type of perturbation theory that characterizes the behavior of microscopically inhomogeneous material with a periodic boundary condition in the microstructure. Therefore, it is possible to analyze accurate permeability characteristics that are represented by the local effect of the facture geometry. The Cpermeability coefficients that are calculated using the homogenization analysis for each rough fracture model exhibit an irregular distribution and do not follow the relationship of the cubic law. This distribution suggests that the permeability characteristics strongly depend on the geometric conditions of the fractures, such as the roughness and the aperture variation. The homogenization analysis may allow us to produce more accurate results than are possible with the preexisting equations for calculating permeability.

우유 균질 조건 예측을 위한 반응표면방법론의 활용 (Applying Response Surface Methodology to Predict the Homogenization Efficiency of Milk)

  • 임성수;오세종
    • Journal of Dairy Science and Biotechnology
    • /
    • 제41권1호
    • /
    • pp.1-8
    • /
    • 2023
  • Response surface methodology (RSM) is a statistical approach widely used in food processing to optimize the formulation, processing conditions, and quality of food products. The homogenization process is achieved by subjecting milk to high pressure, which breaks down fat globules and disperses fat more evenly throughout milk. This study focuses on an application of RSM including the logit transformation to predict the efficiency of milk homogenization, which can be maximized by minimizing the relative difference in fat percentage between the top part and the remainder of milk. To avoid a negative predicted value of the minimum of this proportion, the logit transformation is used to turn the proportion into the logit, whose possible values are real numbers. Then, the logit values are modeled and optimized. Subsequently, the logistic transformation is used to turn the predicted logit into the predicted proportion. From our model, the optimum condition for the maximized efficiency of milk homogenization was predicted as the combination of a homogenizer pressure of 30 MPa, a storage temperature of 10℃, and a storage period of 10 days. Additionally, with a combination of a homogenizer pressure of 30 MPa, a storage temperature of 10℃, and a storage period of 50 days, the level of milk homogenization was predicted to be acceptable, even with the problem of extrapolation taken into account.