• Title/Summary/Keyword: Homogenization Method

Search Result 257, Processing Time 0.031 seconds

Simplified stress analysis of perforated plates using homogenization technique (균질화기법을 이용한 다공평판의 단순화된 응력해석)

  • 이진희
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.51-57
    • /
    • 1995
  • A simplified stress analysis of perforated plates was carried out using homogenization technique. Homogenization technique, which introduced miroscale expansion in the standard finite element method, reconstructed the plate with regularly placed holes into a set of macroscale and microscale models. The microscale model helped compute homogenized material constants of the unit cell, which were used to compute macroscale displacements in the macroscale model. Also it was possible to compute the stress field of the plate using the microscale model. It was found that reasonable equivalent material constants were computed and that the required degrees of freedom was drastically reduced when homogenization technique was employed in the stress analyses. The microscale modeling in the homogenization technique provided a useful concept of pre- and post-processing in the stress analysis of perforated plates.

  • PDF

Optimization of Preparation Variables for Trimyristin Solid Lipid Nanoparticles

  • Choi, Mi-Hee;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.1
    • /
    • pp.51-55
    • /
    • 2007
  • Solid lipid nanoparticles (SLNs) have been regarded to behave similar to the vegetable oil emulsions because emulsions of lipid melts are formed before lipid droplets being solidified to turn into SLNs. Compared to lipid emulsion, however, it has been more difficult to obtain stable SLNs and needs more extensive considerations on stabilizer and manufacturing process. In the present study, we tried to prepare phosphatidylcholine-based trymyristin (TM) SLNs using high pressure homogenization method and optimize the manufacturing variables such as homogenization pressure, number of homogenization cycles, cooling temperature, co-stabilizer and freeze-drying with cryoprotectants. Nano-sized TM particles could be Prepared using egg Phosphatidylcholine and pegylated phospholipids ($PEG_{2000}$PE) as stabilizers. Based on the optimization study, the dispersion was manufactured by homogenization under the pressure of 100 MPa for more than 5 cycles, and solidifying the intermediately formed lipid melt droplets by dipping in liquid nitrogen followed by thawing at room temperature. In addition, TM SLNs could be freeze-dried and then redispersed easily without significant particle size changes after freeze drying with 10% and 12.5% sucrose or trehalose. The TM SLNs established in this study can be used as delivery system for drugs and cosmetics.

Enthalpy - based homogenization procedure for composite piezoelectric modules with integrated electrodes

  • Kranz, Burkhard;Benjeddou, Ayech;Drossel, Welf-Guntram
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.579-594
    • /
    • 2013
  • A new enthalpy - based procedure for the homogenization of the electromechanical material parameters of composite piezoelectric modules with integrated electrodes is presented. It is based on a finite element (FE) modeling of the latter's representative volume element (RVE). In contrast to most previously published homogenization approaches that are based on averaged quantities, the presented method uses a direct evaluation of the electromechanical enthalpy. Hence, for the linear orthotropic piezoelectric composite behavior full set of elastic, piezoelectric, and dielectric material parameters, 17 load cases (LC) are used where each load case leads directly to one material parameter. This gives the possibility to elaborate a very strict and easy to program processing. In conjunction with the 17 LC, the enthalpy - based homogenization is particularly suitable for laminated composite piezoelectric modules with integrated electrodes. In this case, the electric load has to be given at the electrodes rather than at the RVE FE model boundaries. The proposed procedure is validated through its comparison to literature available results on a classical 1-3 piezoelectric micro fiber (longitudinally polarized) reinforced composite and a $d_{15}$ shear piezoelectric macro-fiber (transversely polarized) composite module.

Modeling of the Mechanical Behavior of Polycrystalline Shape-Memory Alloys by a Homogenization Method (균질화법에 의한 다결정 형상기억합금의 기계적 거동 모델링)

  • Gu, Byeong-Chun;Jo, Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1352-1361
    • /
    • 2000
  • We obtain a micromechanics-based Helmholtz free energy and then in the framework of irreversible thermodynamics, a kinetic relation, a martensitic nucleation criterion and the reorientation criterion of martensitic variants are obtained. These relations are valid for a three-dimensional proportional and non-proportional loadings and for a combination of mechanical and thermal loading. From the simulated pseudoelastic stress-strain relation of a single crystal with loading rate effect, polycrystalline behavior in case of proportional and non-proportional loading is predicted by a homogenization method. The obtained results are compared quantitatively with experimental results.

Microwave Irradiation-assisted RNA Extraction from Woody Tissues for Plant Virus Detection

  • Duong, Thanh Van;Shin, Dong-Il;Park, Hee-Sung
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.286-288
    • /
    • 2010
  • Plant tissue homogenization using a mortar or mechanical equipment has been the preferred method for obtaining high yields of total RNA; this method, however, is both time-consuming and expensive. Additionally, homogenization may generate excessive endogenous RNases, polyphenolics, and other substances that reduce the quality and quantity of RNA. In this study, we describe the microwave irradiation-assisted RNA extraction (MIRE) technique which, without tissue disruption and homogenization, allows for the cost-effective and rapid generation of intact RNA from apple cane shavings and the reliable detection of apple virus by RT-PCR.

Dynamic Behavior Analysis of a Satellite Having Sandwich Panel by Utilizing Asymptotic Homogenization (Asymptotic 균질화법을 활용한 샌드위치패널로 제작된 위성 구조체의 동적 거동 분석)

  • Cho, Hee Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1203-1210
    • /
    • 2013
  • Korea's first Naro-Science small class satellite was launched by Naro launcher in 2013. The structure of the satellite is mostly composed of aluminum honeycomb and frame. The honeycomb structure is homogenized with asymptotic homogenization method and its mechanical properties were used for the numerical analysis. There have been some difficulties to modeling the honeycomb sandwich panels for FEA. In the present study, the mechanical characteristics of the sandwich panel composite were numerically computed and used for the simulation. This methodology makes it easy to overcome the weakness of modeling of complicated sandwich panels. Both an experiment of vibration test and numerical analyses were conducted simultaneously. The analysis results from the current homogenization were compared with that of experiment. It shows a good agreement on the dynamic responses and certified the reliability of the present methodology when manipulate sandwich panel structure.

Characterization of the mixed soil with waste and application to geotechnical field (폐기물을 포함한 혼합토의 특성 및 지반공학분야에의 응용)

  • 이기호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.11a
    • /
    • pp.72-84
    • /
    • 2001
  • In order to utilize mass of oyster shells for a partial substitute material for reclamation, we investigate the shear characteristics of dredged sluge mixed with oyster shells. the apparent modulus of elasticity of the this mixture are obtained from the triaxial compression tests and is utilized to characterize the apparent modulus of elastic of the oyster shells by carrying out some numerical analysis based upon the homogenization theory. We got the conclusion by a series of experiment, 1) It is verified that modulus of elasticity of dredged clay is improved by mixing with oyster shells. 2) The homogenization method for deducing apparent modulus of elasticity of oyster shells, which can consider micro-structure of mixed soil, is introduced. The elastic modulus is affected from the skeleton structure of oyster shell. The effect of 49kPa is bigger than that of 98kPa.

  • PDF

Shape Design of the NFR Suspension Load Beam Considering Dynamic Characteristics (NFR 서스펜션의 동특성을 고려한 형상설계에 관한 연구)

  • Eun Gilsoo;Kim Nohyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.376.2-376
    • /
    • 2002
  • In this study, the shape of suspension load beam for NFR(Near Field Recording) was proposed, which was designed using Topology optimization based on Homogenization method. Lens and Micro-mirror are attached to the end of the suspension load beam for collection and control the light, which increasing the system mass. Increment of the system mass cause to decrease the tracking stiffness mode frequency. (omitted)

  • PDF

Tailoring fabric geometry of plain-woven composites for simultaneously enhancing stiffness and thermal properties

  • Zhou, Xiao-Yi;Wang, Neng-Wei;Xiong, Wen;Ruan, Xin;Zhang, Shao-Jin
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.489-499
    • /
    • 2022
  • This paper proposes a numerical optimization method to design the mesoscale architecture of textile composite for simultaneously enhancing mechanical and thermal properties, which compete with each other making it difficult to design intuitively. The base cell of the periodic warp and fill yarn system is served as the design space, and optimal fibre yarn geometries are found by solving the optimization problem through the proposed method. With the help of homogenization method, analytical formulae for the effective material properties as functions of the geometry parameters of plain-woven textile composites were derived, and they are used to form the inverse homogenization method to establish the design problem. These modules are then put together to form a multiobjective optimization problem, which is formulated in such a way that the optimal design depends on the weight factors predetermined by the user based on the stiffness and thermal terms in the objective function. Numerical examples illustrate that the developed method can achieve reasonable designs in terms of fibre yarn paths and geometries.