• 제목/요약/키워드: Homogeneous transformation matrix

검색결과 24건 처리시간 0.297초

WAVELET-BASED FOREST AREAS CLASSIFICATION BY USING HIGH RESOLUTION IMAGERY

  • Yoon Bo-Yeol;Kim Choen
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.698-701
    • /
    • 2005
  • This paper examines that is extracted certain information in forest areas within high resolution imagery based on wavelet transformation. First of all, study areas are selected one more species distributed spots refer to forest type map. Next, study area is cut 256 x 256 pixels size because of image processing problem in large volume data. Prior to wavelet transformation, five texture parameters (contrast, dissimilarity, entropy, homogeneity, Angular Second Moment (ASM≫ calculated by using Gray Level Co-occurrence Matrix (GLCM). Five texture images are set that shifting window size is 3x3, distance .is 1 pixel, and angle is 45 degrees used. Wavelet function is selected Daubechies 4 wavelet basis functions. Result is summarized 3 points; First, Wavelet transformation images derived from contrast, dissimilarity (texture parameters) have on effect on edge elements detection and will have probability used forest road detection. Second, Wavelet fusion images derived from texture parameters and original image can apply to forest area classification because of clustering in Homogeneous forest type structure. Third, for grading evaluation in forest fire damaged area, if data fusion of established classification method, GLCM texture extraction concept and wavelet transformation technique effectively applied forest areas (also other areas), will obtain high accuracy result.

  • PDF

TOP-1 로보트의 Inverse Jacobian의 해 (A study on the solution of inverse jacobian for TOP-1)

  • 우상래;이재섭;김형래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.304-309
    • /
    • 1986
  • This paper is about the Inverse Jacobian for the TOP-1 robot. The robot Jacobian is used for the movement in accordance with differental changes. A Matrix and Homogeneous Transformation Matrix, Differential Motion Vector D are applied to Jacobian equation for the movement of the robot in accordance with the minut changes. The solution of Jacobian equation is acquired and applied for the subtle movement of each arms of the robot. The interface with APPLE-II Micro-computer is searched out too. The Software and the interface resulted from this paper are considered to be higly useful in the accurate control on the robot when they are linked with dynamics of robot.

  • PDF

Effect of the Interaction between Matrix and Nitrate Additives on the Sintering of Silicon Nitride

  • Park, Dae-Chul;Toyohiko Yano;Takayoshi Iseki
    • The Korean Journal of Ceramics
    • /
    • 제5권2호
    • /
    • pp.142-147
    • /
    • 1999
  • The interaction between commercial $Si_3N_4$ powder and two types of additives (nitrate and oxide additives) during the sintering of $Si_3N_4$ was investigated. The nitrates solution or oxide particles were added as a sintering additives. The surface of mixed powder was observed with FT-IR, TG, and HREM. DTA was used to characterize the reactivity of the powders. The formation of crystalline phases and phase transformation were analyzed by XRD. The adsorption of the additives on the surface of silicon nitride was confirmed in the nitrate salts. It was shown that the adsorption occurred by interaction between the amorphous $SiO_2$ layer on the $Si_3N_4$ surface and metal cations $(Al^{3++\; and \;Y^{3+})$ and anions $(NO_3\;^-\; or\; OH^-)$, resulting in a higher degree of homogeneous distribution of additives.

  • PDF

자유곡면을 가공하는 공작기계 체적오차의 일반화 해석 (A Generalized Analysis of Volumetric Error of a Machine Tool Machining a Sculpture)

  • 고태조
    • 한국생산제조학회지
    • /
    • 제4권3호
    • /
    • pp.39-47
    • /
    • 1995
  • This paper suggests generalize mathematica mode for the benefit of volumetric error analysis of a multi-axis machine tool machining a sculptured surfaces. The volumetric error, in this paper, is defined as a three dimensional error at the cutting point, which is caused by the geometric errors and the kinematic errors of each axis and alignment errors of the cutting tool. The actual cutting position is analyzed based on the form shaping model including a geometric error of the moving carriage, where a form shaping model is derived from the homogeneous transformation matrix. Then the volumetric error is obtained by calculating the position difference between the actual cutting position and the ideal one calculated from a Nonuniform Rational B-Spline named as NURES. The simulation study shows the effectiveness for predicting the behavior of machining error and for the method of error compensation.

  • PDF

Measurement Error Modeling for On-Machine Measurement of Sculptured Surfaces

  • Cho, Myeong-Woo;Lee, Se-Hee;Seo, Tae-Il
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권2호
    • /
    • pp.73-80
    • /
    • 2001
  • The objective of this research is to develop a measurement error model for sculptured surface in On-Machine Measurement(OMM) process based on a closed-loop configuration. The geometric error model of each axis of a vertical CNC machining center is derived using a 4$\times$4 homogeneous transformation matrix. The ideal locations of a touch-type probe for the sculptured surface measurement are calculated from the parametric surface representation and X-, Y- directional geometric errors of the machine. Also the actual coordinates of the probe are calculated by considering the pre-travel variation of a probe and Z-directional geometric errors. Then, the step-by-sep measurement error analysis method is suggested based on a closed-loop configuration of the machining center including workpiece and probe errors. The simulation study shows the simplicity and effectiveness of the proposed error modeling strategy.

  • PDF

형상 재 설계에 의한 공작기계 기하오차 보정 (Geometric error compensation of machine tools by geometry redesign)

  • 서성교
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.367-372
    • /
    • 2000
  • Accuracy of a machined component is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the accuracy of this relative motion is the geometric error of machine tools. In this study, geometric error is modeled using form shaping motion of machine tool, where a form shaping function is derived from the homogeneous transformation matrix. Geometric errors are measured by laser interferometer. After that, the local positioning error can be estimated from the form shaping model and geometric error data base. From this information, we can remodel the part by shifting the design surface to the amount of positional error. By generating tool path to the redesigned surface, we can reduce the machining error.

  • PDF

CAD/CAM/CAI 통합에 기초한 자유곡면의 On-Machine Measurement : I. 측정오차 모델링 (On-Machine Measurement of Sculptured Surfaces Based on CAD/CAM/CAI Integration : I. Measurement Error Modeling)

  • 조명우;이세희;서태일
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.172-181
    • /
    • 1999
  • The objective of this research is to develop a measurement error model for sculptured surfaces in On-Machine Measurement (OMM) process based on a closed-loop configuration. The geometric error model of each axis of a vertical CNC Machining center is derived using a 4${\times}$4 homogeneous transformation matrix. The ideal locations of a touch-type probe for the scupltured surface measurement are calculated from the parametric surface representation and X-, Y- directional geometric errors of the machine. Also, the actual coordinates of the probe are calculated by considering the pre-travel variation of a probe and Z-directional geometric errors. Then, the step-by-step measurement error analysis method is suggested based on a closed-loop configuration of the machining center including workpiece and probe errors. The simulation study shows the simplicity and effectiveness of the proposed error modeling strategy.

  • PDF

Stochastic optimal control analysis of a piezoelectric shell subjected to stochastic boundary perturbations

  • Ying, Z.G.;Feng, J.;Zhu, W.Q.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • 제9권3호
    • /
    • pp.231-251
    • /
    • 2012
  • The stochastic optimal control for a piezoelectric spherically symmetric shell subjected to stochastic boundary perturbations is constructed, analyzed and evaluated. The stochastic optimal control problem on the boundary stress output reduction of the piezoelectric shell subjected to stochastic boundary displacement perturbations is presented. The electric potential integral as a function of displacement is obtained to convert the differential equations for the piezoelectric shell with electrical and mechanical coupling into the equation only for displacement. The displacement transformation is constructed to convert the stochastic boundary conditions into homogeneous ones, and the transformed displacement is expanded in space to convert further the partial differential equation for displacement into ordinary differential equations by using the Galerkin method. Then the stochastic optimal control problem of the piezoelectric shell in partial differential equations is transformed into that of the multi-degree-of-freedom system. The optimal control law for electric potential is determined according to the stochastic dynamical programming principle. The frequency-response function matrix, power spectral density matrix and correlation function matrix of the controlled system response are derived based on the theory of random vibration. The expressions of mean-square stress, displacement and electric potential of the controlled piezoelectric shell are finally obtained to evaluate the control effectiveness. Numerical results are given to illustrate the high relative reduction in the root-mean-square boundary stress of the piezoelectric shell subjected to stochastic boundary displacement perturbations by the optimal electric potential control.

공작기계 원점 열변형오차의 모델링 및 보상제어 (Modeling and Compensatory Control of Thermal Error for the Machine Orgin of Machine Tools)

  • 정성종
    • 한국생산제조학회지
    • /
    • 제8권4호
    • /
    • pp.19-28
    • /
    • 1999
  • In order to control thermal deformation of the machine origin of machine tools a empirical model and a compensation system have been developed, Prior to empirical modeling the volumetric error considering shape errors and joint errors of slides is formulated through the homogeneous transformation matrix (HTM) and kinematic chain. Simulation results of the HTM method show that the thermal error of the machine origin is more critical than position-dependent errors. In order to make a stable and effective software error compensation system the GMDH (Group Method of Data Handling) models are constructed to estimate the thermal deformation of the machine origin by measuring deformation data and temperature data. A test bar and gap sensors are used to measure the deformation data. In order to compensate the estimated error the work origin shift method is developed by implementing a digital I/O interface board between a CNC controller and an IBM PC. The method shifts the work origin as much as the amounts which are calculated by the pre-established thermal error model. The experiment results for a vertical machining center show that the thermal deformation of the machine origin is reduced within $\pm$5$mu extrm{m}$.

  • PDF

제어곡면 수정에 의한 기하오차 보정 (Compensation of Geometric Error by the Correction of Control Surface)

  • 고태조;박상신;김희술
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.97-103
    • /
    • 2001
  • Accuracy of a machined part is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the relative motion is the geometric errors of a machine tool. In this study, firstly, geometric errors are measured by laser interferometer, and the positioning error of each control point selected uniformly on the control surface CAD model can be estimated from th oirm shaping model and geometric error data base. Where a form shaping function is derived from the link of homogeneous transformation matrix. Secondly, control points are shifted to the estimated amount of positioning errors. A new control surface is modeled with NURBS(Non Uniform Rational B-Spline) surface approximation to the shifted control points. By generating tool paths to the redesigned control surface, we reduce the machining error quite.

  • PDF