• Title/Summary/Keyword: Homogeneous solid solution

Search Result 49, Processing Time 0.029 seconds

The Study of Heat Resistant Aluminum Alloy with CrW Homogeneous Solid Solution (CrW 전율고용체 첨가 내열 알루미늄 합금에 관한 연구)

  • Kim, Jin-Pyeong;Sung, Si-Young;Han, Beom-Suck;Kim, Sang-Ho
    • Journal of Korea Foundry Society
    • /
    • v.33 no.3
    • /
    • pp.122-126
    • /
    • 2013
  • Recently, heat-resistant aluminum alloy has been re-focused as a downsizing materials for the internal combustion engines. Heat-resistant Al alloy development and many researches are still ongoing for the purpose of improving thermal stability, high-temperature mechanical strength and fatigue properties. The conventional principle of heat-resistant Al alloy is the precipitation of intermetallic compounds by adding a variety of elements is generally used to improve the mechanical properties of Al alloys. Heat resistant aluminum alloys have been produced by CrW homogeneous solid solution to overcome the limit of conventional heat resistant aluminum alloy. From EPMA, it is found that CrW homogeneous soild solution phases with the size of $50-100{\mu}m$ have been dispersed uniformly, and there is no reaction between aluminum and CrW alloy. In addition, after maintaining at high temperature of 573 K, there is no growth of hardening phase, nor desolved, but CrW still exists as a homogeneous solid solution.

Preparation of Electrolyte Film for Solid Oxide Fuel Cells by Electrophoretic Deposition (전착법에 의한 음극지지형 SOFC 전해질막 제조)

  • 김상우;이병호;손용배;송휴섭
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.1
    • /
    • pp.23-29
    • /
    • 1999
  • An yttria-stabilized zirconia(YSZ) thin film on a porous NiO-YSZ substrate for an anode support type solid oxide fuel cell(SOFC) was prepared by an electrophoretic deposition(EPD). Deposition condition and film properties in order to obtain the homogeneous YSZ thin film from the EPD solution with different polarity were studied. In different case of alcohol solution, hydrogen gas was produced in aqueous solution from the electrolyte reaction under constant current above 0.138 mA /$\textrm{cm}^2$.Its reaction generated the bubble-formed defect in the deposited film and decreased weight of the film. The homogeneous YSZ thin film was formed in alcohol solution at a constant current, 0.035 mA /$\textrm{cm}^2$ for 10 s.

  • PDF

TSSG-pulling of Sillenite $Bi_{12}TiO_{20}$ for EOS Application

  • Miyazawa, Shintaro
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.227-250
    • /
    • 1999
  • The reproducibility of successive growth of Bi12TiO20(BTO) single crystals using a top-seeded solution growth (TSSG) pulling method was evaluated by measuring the lattice constants and their standard deviations. A substantial phase diagram in the region close to the stoichiometric BTO was established experimentally for this purpose, and the existence of a retrograde solid solution close to a BTO was clarified. It was emphasize that a starting solution, with a 10.0~10.1 mol% TiO2 concentration, results in large single crystals with a highly homogeneous lattice constant of within $\pm$1x10-4$\AA$, when the solidified fraction of the grown crystal is less than about 45%. A wavelength dispersion of refractive index was measured for the first time, an it was verified that the refractive index of BTO is larger than that of BSO(Bi12TiO20), allowing the voltage sensitivity of EOS higher than the case with BSO as a probe head.

  • PDF

Controlling the Growth of Few-layer Graphene Dependent on Composition Ratio of Cu/Ni Homogeneous Solid Solution

  • Lim, Yeongjin;Choi, Hyonkwang;Gong, Jaeseok;Park, Yunjae;Jeon, Minhyon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.273.1-273.1
    • /
    • 2014
  • Graphene, a two dimensional plane structure of $sp^2$ bonding, has been promised for a new material in many scientific fields such as physics, chemistry, and so on due to the unique properties. Chemical vapor deposition (CVD) method using transitional metals as a catalyst can synthesize large scale graphene with high quality and transfer on other substrates. However, it is difficult to control the number of graphene layers. Therefore, it is important to manipulate the number of graphene layers. In this work, homogeneous solid solution of Cu and Ni was used to control the number of graphene layers. Each films with different thickness ratio of Cu and Ni were deposited on $SiO_2/Si$ substrate. After annealing, it was confirmed that the thickness ratio accords with the composition ratio by X-ray diffraction (XRD). The synthesized graphene from CVD was analyzed via raman spectroscopy, UV-vis spectroscopy, and 4-point probe to evaluate the properties. Therefore, the number of graphene layers at the same growth condition was controlled, and the correlation between mole fraction of Ni and the number of graphene layers was investigated.

  • PDF

Properties Analysis of Zn-Mg Alloy Thin Films Prepared by Plasma Enhanced PVD Method (Plasma-PVD법에 의해 제작한 Zn-Mg합금 박막의 특성 분석)

  • Lee, K.H.;Bae, I.Y.;Kim, Y.J.;Moon, K.M.;Lee, M.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.194-195
    • /
    • 2005
  • (100-x)Zn xMg alloy films are prepared onto cold-rolled steel substrates; where x ranged from 0 to about 38 atomic %. The alloy films show microcrystalline and grain structures respectively, according to preparation conditions such as composition ratio of zinc and magnesium or gas pressures etc.. And X-ray diffraction analysis indicates not only the presence of Zn-Mg thin films with forced solid solution but also the one of $MgZn_2$ alloy films partly. In addition the influence of Mg/Zn composition ratio and morphology of the Zn-Mg alloy films on corrosion behavior is evaluated by electro-chemical anodic polarization tests in deaerated 3% NaCl solution. From this experimental results, all the prepared Zn-Mg alloy films showed obviously good corrosion resistance to compare with 99.99% Zn and 99.99% Mg Ingots for evaporation metal. It is thought that the Zn-Mg films with effective forced solid solution prepared by plasma enhanced PVD method, produces smaller and denser grain structure so that may improve the formation of homogeneous passive layer in corrosion environment.

  • PDF

Synthesis of Yttrium Iron Garnet Powder by Homogeneous Precipitation and its Crystallization (균일침전법에 의한 Yttrium Iron Garnet 분말의 합성 및 결정화)

  • 안영수;한문희;김종오
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.693-699
    • /
    • 1996
  • YIG precursor powder was obtained by homogeneous precipitation in chloride salt solution by thermal decom-position of urea. It was found that ferric ions precipitated prior to yttrium ions. The precipitate was minute and spherical in shape. The precipitate formed consisted of the mixture of amorphous and ferric oxyhydroxide. Crystallization of YIG was proceeded by solid state reaction of intermediate YFeO3 and Fe2O3 in the temperature range of 85$0^{\circ}C$ to 140$0^{\circ}C$. Single phase of YIG was obtained by heat-treatment of the powder at 140$0^{\circ}C$ for 6 hrs in air. The powder calcined was molded into pellets and sintered in air. The maximum density of 4,92 g/cm3(95.1% of theoretical density) was obtainable for the pellet sintered at 145$0^{\circ}C$ using the powder calcined at 90$0^{\circ}C$.

  • PDF

NMR Study of Poly(γ-Glutamic Acid)Hydrogels Prepared by γ-Irradiation : Characterization of Bond Formation and Scission

  • 한옥희;최혁준
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.921-924
    • /
    • 1999
  • Hydrogels were prepared from poly( Υ-glutamic acid) (PGA) solution by g-irradiation of 90 kGy and 170 kGy. The hydrogels were more cross-linked with a higher dosage g-irradiation and completely hydrolyzed at 85℃ within 4 hours resulting in homogeneous solution. NMR techniques were employed to clarify chemical bond formation and scission involved during γ-irradiation and hydrolysis. Characterization of these samples was carried out by taking both liquid state and solid state NMR spectra of PGA and hydrolyzed hydrogels and comparison of these spectra with the solid state NMR spectra of hydrogels. Our results indicate that complicated chemical bond formation and scission have occurred during hydrolysis and γ-irradiation. The samples prepared with higher dosage of γ-irradiation showed more diverse chemical bond formation and scission.

Non-simple magnetothermoelastic solid cylinder with variable thermal conductivity due to harmonically varying heat

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.681-697
    • /
    • 2016
  • The model of two-temperature magneto-thermoelasticity for a non-simple variable-thermal-conductivity infinitely-long solid cylinder is established. The present cylinder is made of an isotropic homogeneous thermoelastic material and its bounding plane is traction-free and subjected to a time-dependent temperature. An exact solution is firstly obtained in Laplace transform space to obtain the displacement, incremental temperature, and thermal stresses. The inversion of Laplace transforms has been carried out numerically since the response is of more interest in the transient state. A detailed analysis of the effects of phase-lags, an angular frequency of thermal vibration and the variability of thermal conductivity parameter on the field quantities is presented.

Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor

  • Arefi, Mohammad;Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • This research tries to present a nonlinear thermo-elastic solution for a functionally graded spherical shell subjected to mechanical and thermal loads. Geometric nonlinearity is considered using the Lagrange or finite strain tensor. Non-homogeneous material properties are considered based on a power function. Adomian's decomposition method is used for calculation of nonlinear results. Nonlinear results such as displacement can be evaluated for sphere in terms of different indexes of non-homogeneity. A comprehensive comparison between linear and nonlinear results and evaluation of the percentage of difference between them can be performed in this paper. The obtained results indicate that the improvement of the results due to usage of nonlinear analysis is depending on the non-homogeneous index.

Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.1-24
    • /
    • 2014
  • The present study deals with two dimensional electro-elastic analysis of a functionally graded piezoelectric (FGP) cylinder under internal pressure. Energy method and first order shear deformation theory (FSDT) are employed for this purpose. All mechanical and electrical properties except Poisson ratio are considered as a power function along the radial direction. The cylinder is subjected to uniform internal pressure. By supposing two dimensional displacement and electric potential fields along the radial and axial direction, the governing differential equations can be derived in terms of unknown electrical and mechanical functions. Homogeneous solution can be obtained by imposing the appropriate mechanical and electrical boundary conditions. This proposed solution has capability to solve the cylinder structure with arbitrary boundary conditions. The previous solutions have been proposed for the problem with simple boundary conditions (simply supported cylinder) by using the routine functions such as trigonometric functions. The axial distribution of the axial displacement, radial displacement and electric potential of the cylinder can be presented as the important results of this paper for various non homogeneous indexes. This paper evaluates the effect of a local support on the distribution of mechanical and electrical components. This investigation indicates that a support has important influence on the distribution of mechanical and electrical components rather than a cylinder with ignoring the effect of the supports. Obtained results using present method at regions that are adequate far from two ends of the cylinder can be compared with previous results (plane elasticity and one dimensional first order shear deformation theories).