• Title/Summary/Keyword: Homogeneous Mixture

Search Result 305, Processing Time 0.021 seconds

Design for Thermite Reaction Efficiency Improvement of Nb-Ni Mother Alloy (Nb-Ni 모 합금의 테르밋 반응 효율 향상 방안 설계)

  • Jin Uk Gwon;Hye Sung Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.33-39
    • /
    • 2023
  • In this study, the effect of mixing condition of raw material powders possessing various particle size and particle size distribution on thermite reaction efficiency was investigated. When fine raw powders are used, rather the reaction yield tends to decrease due to agglomeration. In contrast, coarse raw powders make deteriorate the contact area between raw material powders containing Al reducing agent. To ensure the optimal thermite reaction efficiency, it is required to optimize a mixture condition of raw material powders prior to thermite reaction. From the current experiment, the maximum thermite reaction efficiency is 77%, which came from Nb2O5 + NiO +Al mixtures with size distribution from 9.25 to 22.63 ㎛.

Mixed Grinding Effect on Kaolinite-Aluminum Trihydroxide Mixture and Its Influence on Mullite Formation (Kaolinite-Aluminum Trihydroxide의 혼합물의 혼합분쇄효과 및 Mullite의 생성에 미치는 영향)

  • 류호진
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.2
    • /
    • pp.195-201
    • /
    • 1997
  • The present paper describes the effect of dry mixed grinding on kaolinite-aluminum trihydroxide mixture with a planetary ball mill before sintering and its influence on mullite formation during sintering. The size reduction of the mixture is market in the early stage of grinding and the obtained fine particles agglomerate subsequently with an increase of grinding time. The crystal structure of the mixture is collapsed easily into an amorphous one by planetary ball milling, of which amount increases with an increase of grinding time. Only mullite phase except for anatase as an inherent impurity in kaolinite appeared in the sintered body of the mixtures with mixed grinding as relatively lower temperature 1523K, while corundum, cristobalite, and Al-Si spinel phases, besides mullite were formed in the sintered body of the mixture without mixed grinding. Therefore, the mixed grinding treatment is very effective to improve the homogeneous mixing and disp-ersion of the mixture of raw materials on a micro scale and to decrease the thermal decomposition tem-perature by crystal structure change of them so as to obatin direct preparation of mullite with high purity at relatively low temperature.

  • PDF

A Study on the Injection Characteristics of Direct Injection CNG Fuel (직접분사 CNG 연료의 분사특성에 관한 연구)

  • Lee, S.W.;Rogers, T.;Petersen, P.;Kim, I.G.;Kang, H.I.
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.643-647
    • /
    • 2014
  • Two types of fuel supply method ar used in CNG vehicles. One is premixed ignition and the other is gas-jet ignition. In premixed ignition, the fuel is introduced with intake air so that homogeneous air-fuel mixture may form. The ignitability of this method depends on the global equivalence ratio. In gas-jet ignition, CNG is introduced directly into the engine combustion chamber. The overall mixture is stratified by retarded fuel injection. In this study, a visualization technique was employed to obtain fundamental properties regarding overall mixture formation of direct injected CNG fuel inside a constant volume chamber. Jet angles, penetrations and projected jet area with respect to ambient pressure are investigated. The penetration decreases apparently and the time reaching the CVC wall was delayed as the chamber pressure increases. This is caused by the higher inertia of the fluid elements that the injected fluid must accelerate and push aside. It is same to liquid fuel such as diesel and gasoline, but this phenomenon is far more prominent for the gaseous fuel.

In-cylinder Spray Flow Characteristics in Direct-injection Gasoline Engine (직접 분사식 가솔린 엔진의 실린더 내 분무 유동 특성에 관한 연구)

  • 김진수;전문수;윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.51-59
    • /
    • 2000
  • In-cylinder spray flow motion plays an important in the adjustment of mixture preparation with a fundamental spray characteristics and in-cylinder flow field well in direct-injection gasoline engine. In this study, the fundamental spray characteristics such as mean drop size, velocity distribution, spray angle were measured and in-cylinder spray flow motion was visualized in order to optimize intake port, piston top land and combustion chamber shapes in the development stage of mass-produced G야 engine. For these experiments, the PDPA measurements and Mie scattering technique were used for detailed spray characteristics and in-cylinder spray motions were obtained by use of ICCD camera through the single-cylinder optical engine. From the experimental results, the test injector shows a good low-end linearity between the dynamic flow and fuel injection pulse width and the fuel spray of 20mm or less in SMD with good spray symmetry. In addition, the in-cylinder tumble flow has more effect on the homogeneous mixture formation than that of in-cylinder swirl flow at early injection mode and the in-cylinder swirl flow plays a better role of stratified mixture preparation than tumble flow at late injection mode.

  • PDF

Characteristics of Transesterification Reaction of Soy Bean Oil by Acid Catalysts (산촉매에 의한 대두유의 전이에스테르화 반응 특성)

  • Shin, Yong-Seop
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.231-238
    • /
    • 2009
  • Characteristics of the transesterification reaction between triglycerides in soy bean oil and methanol were investigated in the presence of acid catalysts. such as sulfuric acid and PTS (p-toluene sulfonic acid). Concentrations of diglyceride and monoglyceride which were intermediates in the reaction mixtures, were far below 10% of triglyceride under any reaction conditions. Thus, conversion of the reaction could be determined from the concentration of triglyceride. Dried PTS had more superior catalytic power than sulfuric acid for transesterification reaction between soy bean oil and methanol. When transesterification reaction of soy bean oil was catalyzed by 1 wt% of PTS at methanol stoichiometric mole ratio of 2 and $65^{\circ}C$, final conversion reached 95% within 48 hours. If FAME (fatty acid methyl ester) was added into reaction mixture of soy bean oil, methanol and PTS catalyst, it converted reaction mixture into homogeneous phase, and substantially increased reaction rate. When reaction mixture was freely boiling which had equal volumetric amount of FAME to soy bean oil, methanol stoichiometric mole ratio of 2 and 1 wt% of PTS, final conversion achieved value of 94% and temperature approached to $110^{\circ}C$ within 2 hours.

Removal of Post Etch/Ash Residue on an Aluminum Patterned Wafer Using Supercritical CO2 Mixtures with Co-solvents and Surfactants: the Removal of Post Etch/Ash Residue on an Aluminum Patterned Wafer

  • You, Seong-sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.55-60
    • /
    • 2017
  • The supercritical $CO_2$ (sc-$CO_2$) mixture and the sc-$CO_2$-based Photoresist(PR) stripping(SCPS) process were applied to the removal of the post etch/ash PR residue on aluminum patterned wafers and the results were observed by scanning of electron microscope(SEM). In the case of MDII wafers, the carbonized PR was able to be effectively removed without pre-stripping by oxygen plasma ashing by using sc-$CO_2$ mixture containing the optimum formulated additives at the proper pressure and temperature, and the same result was also able to be obtained in the case of HDII wafer. It was found that the efficiency of SCPS of ion implanted wafer improved as the temperature of SCPS was high, so a very large amount of MEA in the sc-$CO_2$ mixture could be reduced if the temperature could be increased at condition that a process permits, and the ion implanted photoresist(IIP) on the wafer was able to be removed completely without pre-treatment of plasma ashing by using the only 1 step SCPS process. By using SCPS process, PR polymers formed on sidewalls of metal conductive layers such as aluminum films, titanium and titanium nitride films by dry etching and ashing processes were removed effectively with the minimization of the corrosion of the metal conductive layers.

  • PDF

Homogeneous Preparation of Barium Titanate by Dimethyl Oxalate in Ethanol Solution (에탄올 용액에서 Dimethyl Oxalate에 의한 티탄산바륨의 균일한 제조)

  • Ryu, Kyoung-Youl;Lim, Myoung-Hee;Huh, Woo-Young;Lee, Chul
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.382-386
    • /
    • 1999
  • Spherical particles of barium titanyl oxalate(BTO) were homogeneously precipitated by thermal decomposition of dimethyl oxalate in hydrochloric mixture solutions of water and ethanol. The experimental parameters such as composition of the mixture solvents. the eoncentration of hydrochloric acid and reaction temperature had the paramount effect on the size of panicles collected from the bottom of the reaction vessel at the aging time of 120 min and the composition of BTO. Stoichiometric BTO powders were obtained under certain conditions as relatively low alcohol content in the mixtures, high chloride concentration and high temperature, Monosized, submicrometer, but titanium excess particles were obtained under certain reverse conditions.

  • PDF

Influence of the Molar Ratio of Cl-total:Ti+4 on the Crystalline Structure in Preparation of TiO2 from Aqueous TiOCl2 Solution by Homogeneous Precipitation Method (균일침전법에 의한 이산화티타늄 제조공정에서 TiOCl2 수용액의 Cl-total:Ti+4의 몰 비율이 TiO2 결정구조에 미치는 영향)

  • Lee, Jeong Hoon;Yang, Yeong Seok
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.785-789
    • /
    • 2005
  • $TiO_2$ powders with rutile and brookite phases were synthesized through homogeneous precipitation of the aqueous $TiOCl_2$ solution, prepared from $TiCl_4$ and HCl solution, and their properties were characterized. Based on the analytical results appropriate molar ratios of ${Cl^-}_{total}:Ti^{+4}$ in precipitating solution for synthesis of pure rutile phase and a mixture of rutile and brookite phases were proposed. The volumetric proportion of brookite increased with increasing HCl concentration under a typical condition obtaining mixed phase of rutile and brookite. The brookite phase in the mixture was transformed to anatase phase by heat treatment at about $800^{\circ}C{\sim}850^{\circ}C$, and finally converted to rutile phase at $1000^{\circ}C$.

POINTWISE CROSS-SECTION-BASED ON-THE-FLY RESONANCE INTERFERENCE TREATMENT WITH INTERMEDIATE RESONANCE APPROXIMATION

  • BACHA, MEER;JOO, HAN GYU
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.791-803
    • /
    • 2015
  • The effective cross sections (XSs) in the direct whole core calculation code nTRACER are evaluated by the equivalence theory-based resonance-integral-table method using the WIMS-based library as an alternative to the subgroup method. The background XSs, as well as the Dancoff correction factors, were evaluated by the enhanced neutron-current method. A method, with pointwise microscopic XSs on a union-lethargy grid, was used for the generation of resonance-interference factors (RIFs) for mixed resonant absorbers. This method was modified by the intermediate-resonance approximation by replacing the potential XSs for the non-absorbing moderator nuclides with the background XSs and neglecting the resonance-elastic scattering. The resonance-escape probability was implemented to incorporate the energy self-shielding effect in the spectrum. The XSs were improved using the proposed method as compared to the narrow resonance infinite massbased method. The RIFs were improved by 1% in $^{235}U$, 7% in $^{239}Pu$, and >2% in $^{240}Pu$. To account for thermal feedback, a new feature was incorporated with the interpolation of pre-generated RIFs at the multigroup level and the results compared with the conventional resonance-interference model. This method provided adequate results in terms of XSs and k-eff. The results were verified first by the comparison of RIFs with the exact RIFs, and then comparing the XSs with the McCARD calculations for the homogeneous configurations, with burned fuel containing a mixture of resonant nuclides at different burnups and temperatures. The RIFs and XSs for the mixture showed good agreement, which verified the accuracy of the RIF evaluation using the proposed method. The method was then verified by comparing the XSs for the virtual environment for reactor applicationbenchmark pin-cell problem, as well as the heterogeneous pin cell containing burned fuel with McCARD. The method works well for homogeneous, as well as heterogeneous configurations.

Fabrication of Mo-Cu Powders by Ball Milling and Hydrogen Reduction of MoO3-CuO Powder Mixtures (MoO3-CuO 혼합분말의 볼 밀링 및 수소분위기 열처리에 의한 Mo-Cu 복합분말 제조)

  • Kang, Hyunji;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.322-326
    • /
    • 2018
  • The hydrogen reduction behavior of $MoO_3-CuO$ powder mixture for the synthesis of homogeneous Mo-20 wt% Cu composite powder is investigated. The reduction behavior of ball-milled powder mixture is analyzed by XRD and temperature programmed reduction method at various heating rates in Ar-10% $H_2$ atmosphere. The XRD analysis of the heat-treated powder at $300^{\circ}C$ shows Cu, $MoO_3$, and $Cu_2MoO_5$ phases. In contrast, the powder mixture heated at $400^{\circ}C$ is composed of Cu and $MoO_2$ phases. The hydrogen reduction kinetic is evaluated by the amount of peak shift with heating rates. The activation energies for the reduction, estimated by the slope of the Kissinger plot, are measured as 112.2 kJ/mol and 65.2 kJ/mol, depending on the reduction steps from CuO to Cu and from $MoO_3$ to $MoO_2$, respectively. The measured activation energy for the reduction of $MoO_3$ is explained by the effect of pre-reduced Cu particles. The powder mixture, hydrogen-reduced at $700^{\circ}C$, shows the dispersion of nano-sized Cu agglomerates on the surface of Mo powders.