• Title/Summary/Keyword: Homogeneous Dose

Search Result 81, Processing Time 0.027 seconds

Homogeneous Dose Planning to Paranasal Sinus with the Partial Attenuation filters and Wedged Beams in 6 MV Photon Beam (6 MV 광자선의 투과성필터와 Wedge 선속을 이용한 부비강의 균등선량계획)

  • Choi, Tae-Jin;Lee, Ho-Joon;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.11 no.1
    • /
    • pp.183-191
    • /
    • 1993
  • The homogeneous dose planning is one of the most important roles in radiation therapy. But, it is not easy to obtain a homogeneous dose to paranasal sinus region including the ethmoidal sinus with conventional irradiation techniques. In this experimental study, the authors tried to get a homogeneous dose at PNS region, but the nasal cartirage does not exceed the tolerance dose, with anterior-posterior beam and two both lateral wedged beams. Used three fields were shielded with full thickness of blocks to preserve the eye-balls and with blocks of one half value layer to create a homogeneous dose at the whole treatment volume. The dose computations are based on the three dimensonal structure with modified scatter contributions of partial shielders and attenuated beams in 6 MV photon beams. The dose distributions of mid-plane is examined with Kodak verification films and teflon-embedded TLD rod (1 mm diameter and 6 mm length) to confirm the computed dose. In our study, the whole PNS regions have shown within $85{\%}$ of the resultant isodose curves with relatively homogeneous dose distribution. The results of dose computation and measurements are agree well within $5{\%}$ uncertainties.

  • PDF

Analysis of Dose Distribution of IORT Cone (IORT CONE의 선량분포에 관한 연구)

  • 김명세;김성규;신세원
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.141-148
    • /
    • 1991
  • A since authors started IORT for stomach cancer patient on 198, we developed various sized, shaped IORT cones for better clinical application and homogeneous surface and depth dose distribution. Authors concluded as following. 1. The shaping block should be fixed on the tray, not under the tray for homogeneous dose distribution. 2. The straight cone was showed better dose distribution than divergence cone. 3. The acryl cone was superior than the stainless-steel cone. 4. The acryl cover fixed on the end for IORT cone not only improvement of surface dose, but also homogenity of depth dose.

  • PDF

조영제 사용 전${\cdot}$후 불균질 조직 보정 알고리즘에 따른 선량변화에 대한 연구

  • Kim, Ju-Ho;Jo, Jeong-Hui;Lee, Seok;Jeon, Byeong-Cheol;Park, Jae-Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.13 no.1
    • /
    • pp.38-46
    • /
    • 2001
  • Purpose : The aim of this study is to investigate the effect of tissue inhomogeneities when appling to contrast medium among Homogeneous, Batho and ETAR dose calculation method in RTP system. Method and Material : We made customized heterogeneous phantom it filled with water or contrast medium slab. Phantom scan data have taken PQ 5000 (CT scanner, Marconi, USA) and then dose was calculated in 3D RTP (AcQ-Plan, Marconi, USA) depends on dose calculation algorithm (Homogeneous, Batho, ETAR). The dose comparisons were described in terms of 2D isodose distribution, percent depth dose data, effective path length and monitor unit. Also dose distributions were calculated with homogeneous and inhomogeneous correction algorithm, Batho and ETAR, in each patients with different clinical sites. Results : Result indicated that Batho and ETAR method gave rise to percent depth dose deviation $1.5{\sim}2.7\%,\;2.3{\sim}3.5\%$ (6MV, field size $10{\times}10cm^2$) in each status with and without contrast medium. Also show that effective path lengths were more increase in contrast status (23.14 cm) than Non-contrast (22.07 cm) about $4.9\%$ or 10.7 mm (In case Hounsfield Unit 270) and these results were similary showned in each patient with different clinical site that was lung. prostate, liver and brain region. Concliusion : In conclusion we shown that the use of inhomogeneity correction algorithm for dose calculation in status of injected contrast medium can not represent exact dose at GTV region. These results mean that patients will be more irradiated photon beam during radiation therapy.

  • PDF

Estimation of Noise Level and Edge Preservation for Computed Tomography Images: Comparisons in Iterative Reconstruction

  • Kim, Sihwan;Ahn, Chulkyun;Jeong, Woo Kyoung;Kim, Jong Hyo;Chun, Minsoo
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.92-98
    • /
    • 2021
  • Purpose: This study automatically discriminates homogeneous and structure edge regions on computed tomography (CT) images, and it evaluates the noise level and edge preservation ratio (EPR) according to the different types of iterative reconstruction (IR). Methods: The dataset consisted of CT scans of 10 patients reconstructed with filtered back projection (FBP), statistical IR (iDose4), and iterative model-based reconstruction (IMR). Using the 10th and 85th percentiles of the structure coherence feature, homogeneous and structure edge regions were localized. The noise level was estimated using the averages of the standard deviations for five regions of interests (ROIs), and the EPR was calculated as the ratio of standard deviations between homogeneous and structural edge regions on subtraction CT between the FBP and IR. Results: The noise levels were 20.86±1.77 Hounsfield unit (HU), 13.50±1.14 HU, and 7.70±0.46 HU for FBP, iDose4, and IMR, respectively, which indicates that iDose4 and IMR could achieve noise reductions of approximately 35.17% and 62.97%, respectively. The EPR had values of 1.14±0.48 and 1.22±0.51 for iDose4 and IMR, respectively. Conclusions: The iDose4 and IMR algorithms can effectively reduce noise levels while maintaining the anatomical structure. This study suggested automated evaluation measurements of noise levels and EPRs, which are important aspects in CT image quality with patients' cases of FBP, iDose4, and IMR. We expect that the inclusion of other important image quality indices with a greater number of patients' cases will enable the establishment of integrated platforms for monitoring both CT image quality and radiation dose.

Development of Dose Verification Method for In vivo Dosimetry in External Radiotherapy (방사선치료에서 투과선량을 이용한 체내선량 검증프로그램 개발)

  • Hwang, Ui-Jung;Baek, Tae Seong;Yoon, Myonggeun
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • The purpose of this study is to evaluate the developed dose verification program for in vivo dosimetry based on transit dose in radiotherapy. Five intensity modulated radiotherapy (IMRT) plans of lung cancer patients were used in the irradiation of a homogeneous solid water phantom and anthropomorphic phantom. Transit dose distribution was measured using electronic portal imaging device (EPID) and used for the calculation of in vivo dose in patient. The average passing rate compared with treatment planning system based on a gamma index with a 3% dose and a 3 mm distance-to-dose agreement tolerance limit was 95% for the in vivo dose with the homogeneous phantom, but was reduced to 81.8% for the in vivo dose with the anthropomorphic phantom. This feasibility study suggested that transit dose-based in vivo dosimetry can provide information about the actual dose delivery to patients in the treatment room.

A Feasibility Study on Using Neural Network for Dose Calculation in Radiation Treatment (방사선 치료 선량 계산을 위한 신경회로망의 적용 타당성)

  • Lee, Sang Kyung;Kim, Yong Nam;Kim, Soo Kon
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.55-64
    • /
    • 2015
  • Dose calculations which are a crucial requirement for radiotherapy treatment planning systems require accuracy and rapid calculations. The conventional radiotherapy treatment planning dose algorithms are rapid but lack precision. Monte Carlo methods are time consuming but the most accurate. The new combined system that Monte Carlo methods calculate part of interesting domain and the rest is calculated by neural can calculate the dose distribution rapidly and accurately. The preliminary study showed that neural networks can map functions which contain discontinuous points and inflection points which the dose distributions in inhomogeneous media also have. Performance results between scaled conjugated gradient algorithm and Levenberg-Marquardt algorithm which are used for training the neural network with a different number of neurons were compared. Finally, the dose distributions of homogeneous phantom calculated by a commercialized treatment planning system were used as training data of the neural network. In the case of homogeneous phantom;the mean squared error of percent depth dose was 0.00214. Further works are programmed to develop the neural network model for 3-dimensinal dose calculations in homogeneous phantoms and inhomogeneous phantoms.

Analysis of Dose Distribution of Rectal IORT Cone (Rectal IORT cone의 선량분포에 관한 연구)

  • 김성규;신세원;김명세
    • Progress in Medical Physics
    • /
    • v.3 no.1
    • /
    • pp.45-52
    • /
    • 1992
  • Authors started IORT for stomach cancer patient on 1988 and rectal cancer on 1991. We devloped various sized. shaped IORT cones for better clinical application and homogeneous surface and depth dose distribution. Authors obtained results as following. 1. The acryl cover fixed on the end for rectal IORT cone not only improvement of surface dose but also flattness of dose distribution. 2. Dose distribution of elliptical cone were shown almost 100% at inner field. 3. The output with acryl cone size were similar output of made electron cone.

  • PDF

DYNAMIC WEDGE의 임상 적용 가능성에 관한 고찰

  • 김영범;정세영;황웅구
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.7 no.1
    • /
    • pp.103-110
    • /
    • 1995
  • Dynamic wedge system has been introduced to modify the beam profile and to make homogeneous isodose curves in the mass of irregular shape. Before the clinical use of dynamic wedge, several factors such as wedge transmission factor, dose profile, percent depth dose, and wedge angle have to be measured quantitatively. Film dosimetry is used to evaluate these factors in this study. A comparison of the result of the dynamic wedge to physical wedge system is made. A positive result for the application of the dynamic wedge to clinic is derived even though there is a limitation in accuracy of the dosimetry system used. To measure all factors quantitatively, more accurate dosimetry systems are required.

  • PDF

Feasibility Study for Development of Transit Dosimetry Based Patient Dose Verification System Using the Glass Dosimeter (유리선량계를 이용한 투과선량 기반 환자선량 평가 시스템 개발을 위한 가능성 연구)

  • Jeong, Seonghoon;Yoon, Myonggeun;Kim, Dong Wook;Chung, Weon Kuu;Chung, Mijoo;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.241-249
    • /
    • 2015
  • As radiation therapy is one of three major cancer treatment methods, many cancer patients get radiation therapy. To exposure as much radiation to cancer while normal tissues near tumor get little radiation, medical physicists make a radiotherapy plan treatment and perform quality assurance before patient treatment. Despite these efforts, unintended medical accidents can occur by some errors. In order to solve the problem, patient internal dose reconstruction methods by measuring transit dose are suggested. As feasibility study for development of patient dose verification system, inverse square law, percentage depth dose and scatter factor are used to calculate dose in the water-equivalent homogeneous phantom. As a calibration results of ionization chamber and glass dosimeter to transit radiation, signals of glass dosimeter are 0.824 times at 6 MV and 0.736 times at 10 MV compared to dose measured by ionization chamber. Average scatter factor is 1.4 and Mayneord F factor was used to apply percentage depth dose data. When we verified the algorithm using the water-equivalent homogeneous phantom, maximum error was 1.65%.

Homogeneous Enzyme-Linked Binding Assay Mediated by the Interaction of Avidin with Biotin: Mistletoe Lectin I Assay

  • Rhee Paeng, In-Suk;Lee, Eun-Ah;Kim, Hyun-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.115-118
    • /
    • 2004
  • We have examined the feasibility of using the specific interaction between mistletoe lectin I (ML I) and ${\beta}$-Dgalactose instead of the anti-ML I antibody in developing a homogeneous type competitive binding assay for ML I. We also have examined the feasibility of adapting the biotin/avidin mediated homogeneous assay for this system. Alkaline phosphatase (AKP) was employed as a single substrate enzyme label. The dose-response curve shows a detection range of 1-25 ${\mu}$g/mL and a linear response with a correlation coefficient of 0.99. To demonstrate the analytical utility of this method, 10 ${\mu}$g/mL of ML I was spiked into distilled water. The results show that the mean recovery was 10.03 ${\mu}$g/mL with an SD of 0.18. The difference between the spiked value and the mean recovery was 0.03 ${\mu}$g/mL, with a relative error of 0.3 and 1.6 % of RSD.